forked from phoenix/litellm-mirror
270 lines
8.3 KiB
Python
270 lines
8.3 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock, patch
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
|
|
import httpx
|
|
import pytest
|
|
from respx import MockRouter
|
|
|
|
import litellm
|
|
from litellm import Choices, Message, ModelResponse
|
|
|
|
|
|
def test_openai_prediction_param():
|
|
litellm.set_verbose = True
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
|
|
completion = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
print(completion)
|
|
|
|
assert (
|
|
completion.usage.completion_tokens_details.accepted_prediction_tokens > 0
|
|
or completion.usage.completion_tokens_details.rejected_prediction_tokens > 0
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_prediction_param_mock():
|
|
"""
|
|
Tests that prediction parameter is correctly passed to the API
|
|
"""
|
|
litellm.set_verbose = True
|
|
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
from openai import AsyncOpenAI
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
await litellm.acompletion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
# Verify the request contains the prediction parameter
|
|
assert "prediction" in request_body
|
|
# verify prediction is correctly sent to the API
|
|
assert request_body["prediction"] == {"type": "content", "content": code}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_openai_prediction_param_with_caching():
|
|
"""
|
|
Tests using `prediction` parameter with caching
|
|
"""
|
|
from litellm.caching.caching import LiteLLMCacheType
|
|
import logging
|
|
from litellm._logging import verbose_logger
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
import time
|
|
|
|
litellm.set_verbose = True
|
|
litellm.cache = litellm.Cache(type=LiteLLMCacheType.LOCAL)
|
|
code = """
|
|
/// <summary>
|
|
/// Represents a user with a first name, last name, and username.
|
|
/// </summary>
|
|
public class User
|
|
{
|
|
/// <summary>
|
|
/// Gets or sets the user's first name.
|
|
/// </summary>
|
|
public string FirstName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's last name.
|
|
/// </summary>
|
|
public string LastName { get; set; }
|
|
|
|
/// <summary>
|
|
/// Gets or sets the user's username.
|
|
/// </summary>
|
|
public string Username { get; set; }
|
|
}
|
|
"""
|
|
|
|
completion_response_1 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
time.sleep(0.5)
|
|
|
|
# cache hit
|
|
completion_response_2 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Replace the Username property with an Email property. Respond only with code, and with no markdown formatting.",
|
|
},
|
|
{"role": "user", "content": code},
|
|
],
|
|
prediction={"type": "content", "content": code},
|
|
)
|
|
|
|
assert completion_response_1.id == completion_response_2.id
|
|
|
|
completion_response_3 = litellm.completion(
|
|
model="gpt-4o-mini",
|
|
messages=[
|
|
{"role": "user", "content": "What is the first name of the user?"},
|
|
],
|
|
prediction={"type": "content", "content": code + "FirstName"},
|
|
)
|
|
|
|
assert completion_response_3.id != completion_response_1.id
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_vision_with_custom_model():
|
|
"""
|
|
Tests that an OpenAI compatible endpoint when sent an image will receive the image in the request
|
|
|
|
"""
|
|
import base64
|
|
import requests
|
|
from openai import AsyncOpenAI
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
litellm.set_verbose = True
|
|
api_base = "https://my-custom.api.openai.com"
|
|
|
|
# Fetch and encode a test image
|
|
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
|
response = requests.get(url)
|
|
file_data = response.content
|
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
|
base64_image = f"data:image/png;base64,{encoded_file}"
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
response = await litellm.acompletion(
|
|
model="openai/my-custom-model",
|
|
max_tokens=10,
|
|
api_base=api_base, # use the mock api
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": base64_image},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body["messages"] == [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "What's in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": ""
|
|
},
|
|
},
|
|
],
|
|
},
|
|
]
|
|
assert request_body["model"] == "my-custom-model"
|
|
assert request_body["max_tokens"] == 10
|