forked from phoenix/litellm-mirror
201 lines
6.4 KiB
Python
201 lines
6.4 KiB
Python
# What is this?
|
|
## Tests if 'get_end_user_object' works as expected
|
|
|
|
import sys, os, asyncio, time, random, uuid
|
|
import traceback
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest, litellm
|
|
import httpx
|
|
from litellm.proxy.auth.auth_checks import (
|
|
_handle_failed_db_connection_for_get_key_object,
|
|
)
|
|
from litellm.proxy._types import UserAPIKeyAuth
|
|
from litellm.proxy.auth.auth_checks import get_end_user_object
|
|
from litellm.caching.caching import DualCache
|
|
from litellm.proxy._types import LiteLLM_EndUserTable, LiteLLM_BudgetTable
|
|
from litellm.proxy.utils import PrismaClient
|
|
|
|
|
|
@pytest.mark.parametrize("customer_spend, customer_budget", [(0, 10), (10, 0)])
|
|
@pytest.mark.asyncio
|
|
async def test_get_end_user_object(customer_spend, customer_budget):
|
|
"""
|
|
Scenario 1: normal
|
|
Scenario 2: user over budget
|
|
"""
|
|
end_user_id = "my-test-customer"
|
|
_budget = LiteLLM_BudgetTable(max_budget=customer_budget)
|
|
end_user_obj = LiteLLM_EndUserTable(
|
|
user_id=end_user_id,
|
|
spend=customer_spend,
|
|
litellm_budget_table=_budget,
|
|
blocked=False,
|
|
)
|
|
_cache = DualCache()
|
|
_key = "end_user_id:{}".format(end_user_id)
|
|
_cache.set_cache(key=_key, value=end_user_obj)
|
|
try:
|
|
await get_end_user_object(
|
|
end_user_id=end_user_id,
|
|
prisma_client="RANDOM VALUE", # type: ignore
|
|
user_api_key_cache=_cache,
|
|
)
|
|
if customer_spend > customer_budget:
|
|
pytest.fail(
|
|
"Expected call to fail. Customer Spend={}, Customer Budget={}".format(
|
|
customer_spend, customer_budget
|
|
)
|
|
)
|
|
except Exception as e:
|
|
if (
|
|
isinstance(e, litellm.BudgetExceededError)
|
|
and customer_spend > customer_budget
|
|
):
|
|
pass
|
|
else:
|
|
pytest.fail(
|
|
"Expected call to work. Customer Spend={}, Customer Budget={}, Error={}".format(
|
|
customer_spend, customer_budget, str(e)
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_handle_failed_db_connection():
|
|
"""
|
|
Test cases:
|
|
1. When allow_requests_on_db_unavailable=True -> return UserAPIKeyAuth
|
|
2. When allow_requests_on_db_unavailable=False -> raise original error
|
|
"""
|
|
from litellm.proxy.proxy_server import general_settings, litellm_proxy_admin_name
|
|
|
|
# Test case 1: allow_requests_on_db_unavailable=True
|
|
general_settings["allow_requests_on_db_unavailable"] = True
|
|
mock_error = httpx.ConnectError("Failed to connect to DB")
|
|
|
|
result = await _handle_failed_db_connection_for_get_key_object(e=mock_error)
|
|
|
|
assert isinstance(result, UserAPIKeyAuth)
|
|
assert result.key_name == "failed-to-connect-to-db"
|
|
assert result.token == "failed-to-connect-to-db"
|
|
assert result.user_id == litellm_proxy_admin_name
|
|
|
|
# Test case 2: allow_requests_on_db_unavailable=False
|
|
general_settings["allow_requests_on_db_unavailable"] = False
|
|
|
|
with pytest.raises(httpx.ConnectError) as exc_info:
|
|
await _handle_failed_db_connection_for_get_key_object(e=mock_error)
|
|
print("_handle_failed_db_connection_for_get_key_object got exception", exc_info)
|
|
|
|
assert str(exc_info.value) == "Failed to connect to DB"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expect_to_work",
|
|
[("openai/gpt-4o-mini", True), ("openai/gpt-4o", False)],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_can_key_call_model(model, expect_to_work):
|
|
"""
|
|
If wildcard model + specific model is used, choose the specific model settings
|
|
"""
|
|
from litellm.proxy.auth.auth_checks import can_key_call_model
|
|
from fastapi import HTTPException
|
|
|
|
llm_model_list = [
|
|
{
|
|
"model_name": "openai/*",
|
|
"litellm_params": {
|
|
"model": "openai/*",
|
|
"api_key": "test-api-key",
|
|
},
|
|
"model_info": {
|
|
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
|
|
"db_model": False,
|
|
"access_groups": ["public-openai-models"],
|
|
},
|
|
},
|
|
{
|
|
"model_name": "openai/gpt-4o",
|
|
"litellm_params": {
|
|
"model": "openai/gpt-4o",
|
|
"api_key": "test-api-key",
|
|
},
|
|
"model_info": {
|
|
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
|
|
"db_model": False,
|
|
"access_groups": ["private-openai-models"],
|
|
},
|
|
},
|
|
]
|
|
router = litellm.Router(model_list=llm_model_list)
|
|
args = {
|
|
"model": model,
|
|
"llm_model_list": llm_model_list,
|
|
"valid_token": UserAPIKeyAuth(
|
|
models=["public-openai-models"],
|
|
),
|
|
"llm_router": router,
|
|
}
|
|
if expect_to_work:
|
|
await can_key_call_model(**args)
|
|
else:
|
|
with pytest.raises(Exception) as e:
|
|
await can_key_call_model(**args)
|
|
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expect_to_work",
|
|
[("openai/gpt-4o", False), ("openai/gpt-4o-mini", True)],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_can_team_call_model(model, expect_to_work):
|
|
from litellm.proxy.auth.auth_checks import model_in_access_group
|
|
from fastapi import HTTPException
|
|
|
|
llm_model_list = [
|
|
{
|
|
"model_name": "openai/*",
|
|
"litellm_params": {
|
|
"model": "openai/*",
|
|
"api_key": "test-api-key",
|
|
},
|
|
"model_info": {
|
|
"id": "e6e7006f83029df40ebc02ddd068890253f4cd3092bcb203d3d8e6f6f606f30f",
|
|
"db_model": False,
|
|
"access_groups": ["public-openai-models"],
|
|
},
|
|
},
|
|
{
|
|
"model_name": "openai/gpt-4o",
|
|
"litellm_params": {
|
|
"model": "openai/gpt-4o",
|
|
"api_key": "test-api-key",
|
|
},
|
|
"model_info": {
|
|
"id": "0cfcd87f2cb12a783a466888d05c6c89df66db23e01cecd75ec0b83aed73c9ad",
|
|
"db_model": False,
|
|
"access_groups": ["private-openai-models"],
|
|
},
|
|
},
|
|
]
|
|
router = litellm.Router(model_list=llm_model_list)
|
|
|
|
args = {
|
|
"model": model,
|
|
"team_models": ["public-openai-models"],
|
|
"llm_router": router,
|
|
}
|
|
if expect_to_work:
|
|
assert model_in_access_group(**args)
|
|
else:
|
|
assert not model_in_access_group(**args)
|