forked from phoenix/litellm-mirror
* fix triton * fix TEXT_COMPLETION_CODESTRAL * fix REPLICATE * fix CLARIFAI * fix HUGGINGFACE * add test_no_async_http_handler_usage * fix PREDIBASE * fix anthropic use get_async_httpx_client * fix vertex fine tuning * fix dbricks get_async_httpx_client * fix get_async_httpx_client vertex * fix get_async_httpx_client * fix get_async_httpx_client * fix make_async_azure_httpx_request * fix check_for_async_http_handler * test: cleanup mistral model * add check for AsyncClient * fix check_for_async_http_handler * fix get_async_httpx_client * fix tests using in_memory_llm_clients_cache * fix langfuse import * fix import --------- Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
362 lines
11 KiB
Python
362 lines
11 KiB
Python
"""
|
|
Translation logic for anthropic's `/v1/complete` endpoint
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from typing import Callable, Optional
|
|
|
|
import httpx
|
|
import requests
|
|
|
|
import litellm
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
|
|
|
|
from ..base import BaseLLM
|
|
from ..prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
|
|
class AnthropicConstants(Enum):
|
|
HUMAN_PROMPT = "\n\nHuman: "
|
|
AI_PROMPT = "\n\nAssistant: "
|
|
|
|
|
|
class AnthropicError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST", url="https://api.anthropic.com/v1/complete"
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class AnthropicTextConfig:
|
|
"""
|
|
Reference: https://docs.anthropic.com/claude/reference/complete_post
|
|
|
|
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
|
|
"""
|
|
|
|
max_tokens_to_sample: Optional[int] = (
|
|
litellm.max_tokens
|
|
) # anthropic requires a default
|
|
stop_sequences: Optional[list] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
metadata: Optional[dict] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens_to_sample: Optional[int] = 256, # anthropic requires a default
|
|
stop_sequences: Optional[list] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
metadata: Optional[dict] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
# makes headers for API call
|
|
def validate_environment(api_key, user_headers):
|
|
if api_key is None:
|
|
raise ValueError(
|
|
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
|
|
)
|
|
headers = {
|
|
"accept": "application/json",
|
|
"anthropic-version": "2023-06-01",
|
|
"content-type": "application/json",
|
|
"x-api-key": api_key,
|
|
}
|
|
if user_headers is not None and isinstance(user_headers, dict):
|
|
headers = {**headers, **user_headers}
|
|
return headers
|
|
|
|
|
|
class AnthropicTextCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def _process_response(
|
|
self, model_response: ModelResponse, response, encoding, prompt: str, model: str
|
|
):
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = response.json()
|
|
except Exception:
|
|
raise AnthropicError(
|
|
message=response.text, status_code=response.status_code
|
|
)
|
|
if "error" in completion_response:
|
|
raise AnthropicError(
|
|
message=str(completion_response["error"]),
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
if len(completion_response["completion"]) > 0:
|
|
model_response.choices[0].message.content = completion_response[ # type: ignore
|
|
"completion"
|
|
]
|
|
model_response.choices[0].finish_reason = completion_response["stop_reason"]
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(
|
|
encoding.encode(prompt)
|
|
) ##[TODO] use the anthropic tokenizer here
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
) ##[TODO] use the anthropic tokenizer here
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
|
|
setattr(model_response, "usage", usage)
|
|
|
|
return model_response
|
|
|
|
async def async_completion(
|
|
self,
|
|
model: str,
|
|
model_response: ModelResponse,
|
|
api_base: str,
|
|
logging_obj,
|
|
encoding,
|
|
headers: dict,
|
|
data: dict,
|
|
client=None,
|
|
):
|
|
if client is None:
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.ANTHROPIC,
|
|
params={"timeout": httpx.Timeout(timeout=600.0, connect=5.0)},
|
|
)
|
|
|
|
response = await client.post(api_base, headers=headers, data=json.dumps(data))
|
|
|
|
if response.status_code != 200:
|
|
raise AnthropicError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=data["prompt"],
|
|
api_key=headers.get("x-api-key"),
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
response = self._process_response(
|
|
model_response=model_response,
|
|
response=response,
|
|
encoding=encoding,
|
|
prompt=data["prompt"],
|
|
model=model,
|
|
)
|
|
return response
|
|
|
|
async def async_streaming(
|
|
self,
|
|
model: str,
|
|
api_base: str,
|
|
logging_obj,
|
|
headers: dict,
|
|
data: Optional[dict],
|
|
client=None,
|
|
):
|
|
if client is None:
|
|
client = get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.ANTHROPIC,
|
|
params={"timeout": httpx.Timeout(timeout=600.0, connect=5.0)},
|
|
)
|
|
|
|
response = await client.post(api_base, headers=headers, data=json.dumps(data))
|
|
|
|
if response.status_code != 200:
|
|
raise AnthropicError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
|
|
completion_stream = response.aiter_lines()
|
|
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="anthropic_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
acompletion: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client=None,
|
|
):
|
|
headers = validate_environment(api_key, headers)
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(
|
|
model=model, messages=messages, custom_llm_provider="anthropic"
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.AnthropicTextConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
|
|
## COMPLETION CALL
|
|
if "stream" in optional_params and optional_params["stream"] is True:
|
|
if acompletion is True:
|
|
return self.async_streaming(
|
|
model=model,
|
|
api_base=api_base,
|
|
logging_obj=logging_obj,
|
|
headers=headers,
|
|
data=data,
|
|
client=None,
|
|
)
|
|
|
|
if client is None:
|
|
client = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
|
|
|
|
response = client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
# stream=optional_params["stream"],
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise AnthropicError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
completion_stream = response.iter_lines()
|
|
stream_response = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="anthropic_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return stream_response
|
|
elif acompletion is True:
|
|
return self.async_completion(
|
|
model=model,
|
|
model_response=model_response,
|
|
api_base=api_base,
|
|
logging_obj=logging_obj,
|
|
encoding=encoding,
|
|
headers=headers,
|
|
data=data,
|
|
client=client,
|
|
)
|
|
else:
|
|
if client is None:
|
|
client = HTTPHandler(timeout=httpx.Timeout(timeout=600.0, connect=5.0))
|
|
response = client.post(api_base, headers=headers, data=json.dumps(data))
|
|
if response.status_code != 200:
|
|
raise AnthropicError(
|
|
status_code=response.status_code, message=response.text
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
|
|
response = self._process_response(
|
|
model_response=model_response,
|
|
response=response,
|
|
encoding=encoding,
|
|
prompt=data["prompt"],
|
|
model=model,
|
|
)
|
|
return response
|
|
|
|
def embedding(self):
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|