forked from phoenix/litellm-mirror
* fix(langfuse.py): support new langfuse prompt_chat class init params * fix(langfuse.py): handle new init values on prompt chat + prompt text templates fixes error caused during langfuse logging * docs(openai_compatible.md): clarify `openai/` handles correct routing for `/v1/completions` route Fixes https://github.com/BerriAI/litellm/issues/5876 * fix(utils.py): handle unmapped gemini model optional param translation Fixes https://github.com/BerriAI/litellm/issues/5888 * fix(o1_transformation.py): fix o-1 validation, to not raise error if temperature=1 Fixes https://github.com/BerriAI/litellm/issues/5884 * fix(prisma_client.py): refresh iam token Fixes https://github.com/BerriAI/litellm/issues/5896 * fix: pass drop params where required * fix(utils.py): pass drop_params correctly * fix(types/vertex_ai.py): fix generation config * test(test_max_completion_tokens.py): fix test * fix(vertex_and_google_ai_studio_gemini.py): fix map openai params
152 lines
5.3 KiB
Python
152 lines
5.3 KiB
Python
"""
|
|
Support for gpt model family
|
|
"""
|
|
|
|
import types
|
|
from typing import Optional, Union
|
|
|
|
import litellm
|
|
from litellm.types.llms.openai import AllMessageValues, ChatCompletionUserMessage
|
|
|
|
|
|
class OpenAIGPTConfig:
|
|
"""
|
|
Reference: https://platform.openai.com/docs/api-reference/chat/create
|
|
|
|
The class `OpenAIConfig` provides configuration for the OpenAI's Chat API interface. Below are the parameters:
|
|
|
|
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
|
|
|
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
|
|
|
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
|
|
|
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
|
|
|
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
|
|
|
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
|
|
|
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
|
|
|
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
|
|
|
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
|
|
|
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
|
"""
|
|
|
|
frequency_penalty: Optional[int] = None
|
|
function_call: Optional[Union[str, dict]] = None
|
|
functions: Optional[list] = None
|
|
logit_bias: Optional[dict] = None
|
|
max_tokens: Optional[int] = None
|
|
n: Optional[int] = None
|
|
presence_penalty: Optional[int] = None
|
|
stop: Optional[Union[str, list]] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
response_format: Optional[dict] = None
|
|
|
|
def __init__(
|
|
self,
|
|
frequency_penalty: Optional[int] = None,
|
|
function_call: Optional[Union[str, dict]] = None,
|
|
functions: Optional[list] = None,
|
|
logit_bias: Optional[dict] = None,
|
|
max_tokens: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
presence_penalty: Optional[int] = None,
|
|
stop: Optional[Union[str, list]] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
response_format: Optional[dict] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_supported_openai_params(self, model: str) -> list:
|
|
base_params = [
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"logprobs",
|
|
"top_logprobs",
|
|
"max_tokens",
|
|
"max_completion_tokens",
|
|
"n",
|
|
"presence_penalty",
|
|
"seed",
|
|
"stop",
|
|
"stream",
|
|
"stream_options",
|
|
"temperature",
|
|
"top_p",
|
|
"tools",
|
|
"tool_choice",
|
|
"function_call",
|
|
"functions",
|
|
"max_retries",
|
|
"extra_headers",
|
|
"parallel_tool_calls",
|
|
] # works across all models
|
|
|
|
model_specific_params = []
|
|
if (
|
|
model != "gpt-3.5-turbo-16k" and model != "gpt-4"
|
|
): # gpt-4 does not support 'response_format'
|
|
model_specific_params.append("response_format")
|
|
|
|
if (
|
|
model in litellm.open_ai_chat_completion_models
|
|
) or model in litellm.open_ai_text_completion_models:
|
|
model_specific_params.append(
|
|
"user"
|
|
) # user is not a param supported by all openai-compatible endpoints - e.g. azure ai
|
|
return base_params + model_specific_params
|
|
|
|
def _map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
supported_openai_params = self.get_supported_openai_params(model)
|
|
for param, value in non_default_params.items():
|
|
if param in supported_openai_params:
|
|
optional_params[param] = value
|
|
return optional_params
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
return self._map_openai_params(
|
|
non_default_params=non_default_params,
|
|
optional_params=optional_params,
|
|
model=model,
|
|
drop_params=drop_params,
|
|
)
|