forked from phoenix/litellm-mirror
* feat: initial commit for watsonx chat endpoint support Closes https://github.com/BerriAI/litellm/issues/6562 * feat(watsonx/chat/handler.py): support tool calling for watsonx Closes https://github.com/BerriAI/litellm/issues/6562 * fix(streaming_utils.py): return empty chunk instead of failing if streaming value is invalid dict ensures streaming works for ibm watsonx * fix(openai_like/chat/handler.py): ensure asynchttphandler is passed correctly for openai like calls * fix: ensure exception mapping works well for watsonx calls * fix(openai_like/chat/handler.py): handle async streaming correctly * feat(main.py): Make it clear when a user is passing an invalid message add validation for user content message Closes https://github.com/BerriAI/litellm/issues/6565 * fix: cleanup * fix(utils.py): loosen validation check, to just make sure content types are valid make litellm robust to future content updates * fix: fix linting erro * fix: fix linting errors * fix(utils.py): make validation check more flexible * test: handle langfuse list index out of range error * Litellm dev 11 02 2024 (#6561) * fix(dual_cache.py): update in-memory check for redis batch get cache Fixes latency delay for async_batch_redis_cache * fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set * feat(user_api_key_auth.py): add parent otel component for auth allows us to isolate how much latency is added by auth checks * perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task) reduces latency by 200ms * feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter) Reduces latency by 400-800ms * fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls reduces latency by 50-100ms * fix: fix linting error * fix(_service_logger.py): fix import * fix(user_api_key_auth.py): fix service logging * fix(dual_cache.py): don't pass 'self' * fix: fix python3.8 error * fix: fix init] * bump: version 1.51.4 → 1.51.5 * build(deps): bump cookie and express in /docs/my-website (#6566) Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together. Updates `cookie` from 0.6.0 to 0.7.1 - [Release notes](https://github.com/jshttp/cookie/releases) - [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1) Updates `express` from 4.20.0 to 4.21.1 - [Release notes](https://github.com/expressjs/express/releases) - [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md) - [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1) --- updated-dependencies: - dependency-name: cookie dependency-type: indirect - dependency-name: express dependency-type: indirect ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * docs(virtual_keys.md): update Dockerfile reference (#6554) Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> * (proxy fix) - call connect on prisma client when running setup (#6534) * critical fix - call connect on prisma client when running setup * fix test_proxy_server_prisma_setup * fix test_proxy_server_prisma_setup * Add 3.5 haiku (#6588) * feat: add claude-3-5-haiku-20241022 entries * feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models * add missing entries, remove vision * remove image token costs * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * build: fix map * build: fix map * build: fix json for model map * Litellm dev 11 02 2024 (#6561) * fix(dual_cache.py): update in-memory check for redis batch get cache Fixes latency delay for async_batch_redis_cache * fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set * feat(user_api_key_auth.py): add parent otel component for auth allows us to isolate how much latency is added by auth checks * perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task) reduces latency by 200ms * feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter) Reduces latency by 400-800ms * fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls reduces latency by 50-100ms * fix: fix linting error * fix(_service_logger.py): fix import * fix(user_api_key_auth.py): fix service logging * fix(dual_cache.py): don't pass 'self' * fix: fix python3.8 error * fix: fix init] * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * fix ImageObject conversion (#6584) * (fix) litellm.text_completion raises a non-blocking error on simple usage (#6546) * unit test test_huggingface_text_completion_logprobs * fix return TextCompletionHandler convert_chat_to_text_completion * fix hf rest api * fix test_huggingface_text_completion_logprobs * fix linting errors * fix importLiteLLMResponseObjectHandler * fix test for LiteLLMResponseObjectHandler * fix test text completion * fix allow using 15 seconds for premium license check * testing fix bedrock deprecated cohere.command-text-v14 * (feat) add `Predicted Outputs` for OpenAI (#6594) * bump openai to openai==1.54.0 * add 'prediction' param * testing fix bedrock deprecated cohere.command-text-v14 * test test_openai_prediction_param.py * test_openai_prediction_param_with_caching * doc Predicted Outputs * doc Predicted Output * (fix) Vertex Improve Performance when using `image_url` (#6593) * fix transformation vertex * test test_process_gemini_image * test_image_completion_request * testing fix - bedrock has deprecated cohere.command-text-v14 * fix vertex pdf * bump: version 1.51.5 → 1.52.0 * fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check (#6577) * fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check * fix(lowest_tpm_rpm_v2.py): return headers in correct format * test: update test * build(deps): bump cookie and express in /docs/my-website (#6566) Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together. Updates `cookie` from 0.6.0 to 0.7.1 - [Release notes](https://github.com/jshttp/cookie/releases) - [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1) Updates `express` from 4.20.0 to 4.21.1 - [Release notes](https://github.com/expressjs/express/releases) - [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md) - [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1) --- updated-dependencies: - dependency-name: cookie dependency-type: indirect - dependency-name: express dependency-type: indirect ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * docs(virtual_keys.md): update Dockerfile reference (#6554) Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> * (proxy fix) - call connect on prisma client when running setup (#6534) * critical fix - call connect on prisma client when running setup * fix test_proxy_server_prisma_setup * fix test_proxy_server_prisma_setup * Add 3.5 haiku (#6588) * feat: add claude-3-5-haiku-20241022 entries * feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models * add missing entries, remove vision * remove image token costs * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * build: fix map * build: fix map * build: fix json for model map * test: remove eol model * fix(proxy_server.py): fix db config loading logic * fix(proxy_server.py): fix order of config / db updates, to ensure fields not overwritten * test: skip test if required env var is missing * test: fix test --------- Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com> * test: mark flaky test * test: handle anthropic api instability * test: update test * test: bump num retries on langfuse tests - their api is quite bad --------- Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
159 lines
5 KiB
Python
159 lines
5 KiB
Python
# What is this?
|
|
## Handler file for OpenAI-like endpoints.
|
|
## Allows jina ai embedding calls - which don't allow 'encoding_format' in payload.
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
|
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.utils import EmbeddingResponse
|
|
|
|
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
|
|
|
|
|
class OpenAILikeEmbeddingHandler(OpenAILikeBase):
|
|
def __init__(self, **kwargs):
|
|
pass
|
|
|
|
async def aembedding(
|
|
self,
|
|
input: list,
|
|
data: dict,
|
|
model_response: EmbeddingResponse,
|
|
timeout: float,
|
|
api_key: str,
|
|
api_base: str,
|
|
logging_obj,
|
|
headers: dict,
|
|
client=None,
|
|
) -> EmbeddingResponse:
|
|
response = None
|
|
try:
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.async_client = client
|
|
|
|
try:
|
|
response = await self.async_client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=response.text if response else str(e),
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
return EmbeddingResponse(**response_json)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
logging_obj,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
optional_params: dict,
|
|
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
|
|
client=None,
|
|
aembedding=None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
headers: Optional[dict] = None,
|
|
) -> EmbeddingResponse:
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="embeddings",
|
|
headers=headers,
|
|
custom_endpoint=custom_endpoint,
|
|
)
|
|
model = model
|
|
data = {"model": model, "input": input, **optional_params}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "api_base": api_base},
|
|
)
|
|
|
|
if aembedding is True:
|
|
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.client = HTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.client = client
|
|
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = self.client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status() # type: ignore
|
|
|
|
response_json = response.json() # type: ignore
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
|
|
return litellm.EmbeddingResponse(**response_json)
|