litellm/cookbook/proxy-server/utils.py
2023-08-16 18:30:08 -07:00

107 lines
No EOL
3.4 KiB
Python

from litellm import completion
import os, dotenv
import json
dotenv.load_dotenv()
############### Advanced ##########################
########### streaming ############################
def generate_responses(response):
for chunk in response:
yield json.dumps({"response": chunk}) + "\n"
################ ERROR HANDLING #####################
# implement model fallbacks, cooldowns, and retries
# if a model fails assume it was rate limited and let it cooldown for 60s
def handle_error(data):
import time
# retry completion() request with fallback models
response = None
start_time = time.time()
rate_limited_models = set()
model_expiration_times = {}
fallback_strategy=['gpt-3.5-turbo', 'command-nightly', 'claude-2']
while response == None and time.time() - start_time < 45: # retry for 45s
for model in fallback_strategy:
try:
if model in rate_limited_models: # check if model is currently cooling down
if model_expiration_times.get(model) and time.time() >= model_expiration_times[model]:
rate_limited_models.remove(model) # check if it's been 60s of cool down and remove model
else:
continue # skip model
print(f"calling model {model}")
response = completion(**data)
if response != None:
return response
except Exception as e:
rate_limited_models.add(model)
model_expiration_times[model] = time.time() + 60 # cool down this selected model
pass
return response
########### Pricing is tracked in Supabase ############
import uuid
cache_collection = None
# Add a response to the cache
def add_cache(messages, model_response):
global cache_collection
if cache_collection is None:
make_collection()
user_question = message_to_user_question(messages)
# Add the user question and model response to the cache
cache_collection.add(
documents=[user_question],
metadatas=[{"model_response": str(model_response)}],
ids=[str(uuid.uuid4())]
)
return
# Retrieve a response from the cache if similarity is above the threshold
def get_cache(messages, similarity_threshold):
try:
global cache_collection
if cache_collection is None:
make_collection()
user_question = message_to_user_question(messages)
# Query the cache for the user question
results = cache_collection.query(
query_texts=[user_question],
n_results=1
)
if len(results['distances'][0]) == 0:
return None # Cache is empty
distance = results['distances'][0][0]
sim = (1 - distance)
if sim >= similarity_threshold:
return results['metadatas'][0][0]["model_response"] # Return cached response
else:
return None # No cache hit
except Exception as e:
print("Error in get cache", e)
raise e
# Initialize the cache collection
def make_collection():
import chromadb
global cache_collection
client = chromadb.Client()
cache_collection = client.create_collection("llm_responses")
# HELPER: Extract user's question from messages
def message_to_user_question(messages):
user_question = ""
for message in messages:
if message['role'] == 'user':
user_question += message["content"]
return user_question