forked from phoenix/litellm-mirror
8217 lines
344 KiB
Python
8217 lines
344 KiB
Python
# +-----------------------------------------------+
|
|
# | |
|
|
# | Give Feedback / Get Help |
|
|
# | https://github.com/BerriAI/litellm/issues/new |
|
|
# | |
|
|
# +-----------------------------------------------+
|
|
#
|
|
# Thank you users! We ❤️ you! - Krrish & Ishaan
|
|
|
|
import sys, re, binascii, struct
|
|
import litellm
|
|
import dotenv, json, traceback, threading, base64
|
|
import subprocess, os
|
|
import litellm, openai
|
|
import itertools
|
|
import random, uuid, requests
|
|
import datetime, time
|
|
import tiktoken
|
|
import uuid
|
|
import aiohttp
|
|
import logging
|
|
import asyncio, httpx, inspect
|
|
from inspect import iscoroutine
|
|
import copy
|
|
from tokenizers import Tokenizer
|
|
from dataclasses import (
|
|
dataclass,
|
|
field,
|
|
) # for storing API inputs, outputs, and metadata
|
|
import pkg_resources
|
|
|
|
filename = pkg_resources.resource_filename(__name__, "llms/tokenizers")
|
|
os.environ[
|
|
"TIKTOKEN_CACHE_DIR"
|
|
] = filename # use local copy of tiktoken b/c of - https://github.com/BerriAI/litellm/issues/1071
|
|
encoding = tiktoken.get_encoding("cl100k_base")
|
|
import importlib.metadata
|
|
from .integrations.traceloop import TraceloopLogger
|
|
from .integrations.helicone import HeliconeLogger
|
|
from .integrations.aispend import AISpendLogger
|
|
from .integrations.berrispend import BerriSpendLogger
|
|
from .integrations.supabase import Supabase
|
|
from .integrations.llmonitor import LLMonitorLogger
|
|
from .integrations.prompt_layer import PromptLayerLogger
|
|
from .integrations.langsmith import LangsmithLogger
|
|
from .integrations.weights_biases import WeightsBiasesLogger
|
|
from .integrations.custom_logger import CustomLogger
|
|
from .integrations.langfuse import LangFuseLogger
|
|
from .integrations.dynamodb import DyanmoDBLogger
|
|
from .integrations.litedebugger import LiteDebugger
|
|
from .proxy._types import KeyManagementSystem
|
|
from openai import OpenAIError as OriginalError
|
|
from openai._models import BaseModel as OpenAIObject
|
|
from .exceptions import (
|
|
AuthenticationError,
|
|
BadRequestError,
|
|
NotFoundError,
|
|
RateLimitError,
|
|
ServiceUnavailableError,
|
|
OpenAIError,
|
|
ContextWindowExceededError,
|
|
Timeout,
|
|
APIConnectionError,
|
|
APIError,
|
|
BudgetExceededError,
|
|
UnprocessableEntityError,
|
|
)
|
|
from typing import cast, List, Dict, Union, Optional, Literal, Any
|
|
from .caching import Cache
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
####### ENVIRONMENT VARIABLES ####################
|
|
# Adjust to your specific application needs / system capabilities.
|
|
MAX_THREADS = 100
|
|
|
|
# Create a ThreadPoolExecutor
|
|
executor = ThreadPoolExecutor(max_workers=MAX_THREADS)
|
|
dotenv.load_dotenv() # Loading env variables using dotenv
|
|
sentry_sdk_instance = None
|
|
capture_exception = None
|
|
add_breadcrumb = None
|
|
posthog = None
|
|
slack_app = None
|
|
alerts_channel = None
|
|
heliconeLogger = None
|
|
promptLayerLogger = None
|
|
langsmithLogger = None
|
|
weightsBiasesLogger = None
|
|
customLogger = None
|
|
langFuseLogger = None
|
|
dynamoLogger = None
|
|
llmonitorLogger = None
|
|
aispendLogger = None
|
|
berrispendLogger = None
|
|
supabaseClient = None
|
|
liteDebuggerClient = None
|
|
callback_list: Optional[List[str]] = []
|
|
user_logger_fn = None
|
|
additional_details: Optional[Dict[str, str]] = {}
|
|
local_cache: Optional[Dict[str, str]] = {}
|
|
last_fetched_at = None
|
|
last_fetched_at_keys = None
|
|
######## Model Response #########################
|
|
# All liteLLM Model responses will be in this format, Follows the OpenAI Format
|
|
# https://docs.litellm.ai/docs/completion/output
|
|
# {
|
|
# 'choices': [
|
|
# {
|
|
# 'finish_reason': 'stop',
|
|
# 'index': 0,
|
|
# 'message': {
|
|
# 'role': 'assistant',
|
|
# 'content': " I'm doing well, thank you for asking. I am Claude, an AI assistant created by Anthropic."
|
|
# }
|
|
# }
|
|
# ],
|
|
# 'created': 1691429984.3852863,
|
|
# 'model': 'claude-instant-1',
|
|
# 'usage': {'prompt_tokens': 18, 'completion_tokens': 23, 'total_tokens': 41}
|
|
# }
|
|
|
|
|
|
class UnsupportedParamsError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url=" https://openai.api.com/v1/")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
def _generate_id(): # private helper function
|
|
return "chatcmpl-" + str(uuid.uuid4())
|
|
|
|
|
|
def map_finish_reason(
|
|
finish_reason: str,
|
|
): # openai supports 5 stop sequences - 'stop', 'length', 'function_call', 'content_filter', 'null'
|
|
# anthropic mapping
|
|
if finish_reason == "stop_sequence":
|
|
return "stop"
|
|
# cohere mapping - https://docs.cohere.com/reference/generate
|
|
elif finish_reason == "COMPLETE":
|
|
return "stop"
|
|
elif finish_reason == "MAX_TOKENS": # cohere + vertex ai
|
|
return "length"
|
|
elif finish_reason == "ERROR_TOXIC":
|
|
return "content_filter"
|
|
elif (
|
|
finish_reason == "ERROR"
|
|
): # openai currently doesn't support an 'error' finish reason
|
|
return "stop"
|
|
# huggingface mapping https://huggingface.github.io/text-generation-inference/#/Text%20Generation%20Inference/generate_stream
|
|
elif finish_reason == "eos_token" or finish_reason == "stop_sequence":
|
|
return "stop"
|
|
elif (
|
|
finish_reason == "FINISH_REASON_UNSPECIFIED" or finish_reason == "STOP"
|
|
): # vertex ai - got from running `print(dir(response_obj.candidates[0].finish_reason))`: ['FINISH_REASON_UNSPECIFIED', 'MAX_TOKENS', 'OTHER', 'RECITATION', 'SAFETY', 'STOP',]
|
|
return "stop"
|
|
elif finish_reason == "SAFETY": # vertex ai
|
|
return "content_filter"
|
|
return finish_reason
|
|
|
|
|
|
class FunctionCall(OpenAIObject):
|
|
arguments: str
|
|
name: str
|
|
|
|
|
|
class Function(OpenAIObject):
|
|
arguments: str
|
|
name: str
|
|
|
|
|
|
class ChatCompletionMessageToolCall(OpenAIObject):
|
|
id: str
|
|
function: Function
|
|
type: str
|
|
|
|
|
|
class Message(OpenAIObject):
|
|
def __init__(
|
|
self,
|
|
content="default",
|
|
role="assistant",
|
|
logprobs=None,
|
|
function_call=None,
|
|
tool_calls=None,
|
|
**params,
|
|
):
|
|
super(Message, self).__init__(**params)
|
|
self.content = content
|
|
self.role = role
|
|
if function_call is not None:
|
|
self.function_call = FunctionCall(**function_call)
|
|
if tool_calls is not None:
|
|
self.tool_calls = []
|
|
for tool_call in tool_calls:
|
|
self.tool_calls.append(ChatCompletionMessageToolCall(**tool_call))
|
|
if logprobs is not None:
|
|
self._logprobs = logprobs
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
def json(self, **kwargs):
|
|
try:
|
|
return self.model_dump() # noqa
|
|
except:
|
|
# if using pydantic v1
|
|
return self.dict()
|
|
|
|
|
|
class Delta(OpenAIObject):
|
|
def __init__(self, content=None, role=None, **params):
|
|
super(Delta, self).__init__(**params)
|
|
self.content = content
|
|
self.role = role
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class Choices(OpenAIObject):
|
|
def __init__(
|
|
self, finish_reason=None, index=0, message=None, logprobs=None, **params
|
|
):
|
|
super(Choices, self).__init__(**params)
|
|
self.finish_reason = (
|
|
map_finish_reason(finish_reason) or "stop"
|
|
) # set finish_reason for all responses
|
|
self.index = index
|
|
if message is None:
|
|
self.message = Message(content=None)
|
|
else:
|
|
self.message = message
|
|
if logprobs is not None:
|
|
self.logprobs = logprobs
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class Usage(OpenAIObject):
|
|
def __init__(
|
|
self, prompt_tokens=None, completion_tokens=None, total_tokens=None, **params
|
|
):
|
|
super(Usage, self).__init__(**params)
|
|
if prompt_tokens:
|
|
self.prompt_tokens = prompt_tokens
|
|
if completion_tokens:
|
|
self.completion_tokens = completion_tokens
|
|
if total_tokens:
|
|
self.total_tokens = total_tokens
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class StreamingChoices(OpenAIObject):
|
|
def __init__(
|
|
self,
|
|
finish_reason=None,
|
|
index=0,
|
|
delta: Optional[Delta] = None,
|
|
logprobs=None,
|
|
**params,
|
|
):
|
|
super(StreamingChoices, self).__init__(**params)
|
|
if finish_reason:
|
|
self.finish_reason = finish_reason
|
|
else:
|
|
self.finish_reason = None
|
|
self.index = index
|
|
if delta:
|
|
self.delta = delta
|
|
else:
|
|
self.delta = Delta()
|
|
|
|
if logprobs is not None:
|
|
self.logprobs = logprobs
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class ModelResponse(OpenAIObject):
|
|
id: str
|
|
"""A unique identifier for the completion."""
|
|
|
|
choices: List[Union[Choices, StreamingChoices]]
|
|
"""The list of completion choices the model generated for the input prompt."""
|
|
|
|
created: int
|
|
"""The Unix timestamp (in seconds) of when the completion was created."""
|
|
|
|
model: Optional[str] = None
|
|
"""The model used for completion."""
|
|
|
|
object: str
|
|
"""The object type, which is always "text_completion" """
|
|
|
|
system_fingerprint: Optional[str] = None
|
|
"""This fingerprint represents the backend configuration that the model runs with.
|
|
|
|
Can be used in conjunction with the `seed` request parameter to understand when
|
|
backend changes have been made that might impact determinism.
|
|
"""
|
|
|
|
usage: Optional[Usage] = None
|
|
"""Usage statistics for the completion request."""
|
|
|
|
_hidden_params: dict = {}
|
|
|
|
def __init__(
|
|
self,
|
|
id=None,
|
|
choices=None,
|
|
created=None,
|
|
model=None,
|
|
object=None,
|
|
system_fingerprint=None,
|
|
usage=None,
|
|
stream=False,
|
|
response_ms=None,
|
|
hidden_params=None,
|
|
**params,
|
|
):
|
|
if stream:
|
|
object = "chat.completion.chunk"
|
|
choices = [StreamingChoices()]
|
|
else:
|
|
if model in litellm.open_ai_embedding_models:
|
|
object = "embedding"
|
|
else:
|
|
object = "chat.completion"
|
|
choices = [Choices()]
|
|
if id is None:
|
|
id = _generate_id()
|
|
else:
|
|
id = id
|
|
if created is None:
|
|
created = int(time.time())
|
|
else:
|
|
created = created
|
|
model = model
|
|
if usage:
|
|
usage = usage
|
|
else:
|
|
usage = Usage()
|
|
if hidden_params:
|
|
self._hidden_params = hidden_params
|
|
super().__init__(
|
|
id=id,
|
|
choices=choices,
|
|
created=created,
|
|
model=model,
|
|
object=object,
|
|
system_fingerprint=system_fingerprint,
|
|
usage=usage,
|
|
**params,
|
|
)
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
def json(self, **kwargs):
|
|
try:
|
|
return self.model_dump() # noqa
|
|
except:
|
|
# if using pydantic v1
|
|
return self.dict()
|
|
|
|
|
|
class Embedding(OpenAIObject):
|
|
embedding: list = []
|
|
index: int
|
|
object: str
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class EmbeddingResponse(OpenAIObject):
|
|
model: Optional[str] = None
|
|
"""The model used for embedding."""
|
|
|
|
data: Optional[List] = None
|
|
"""The actual embedding value"""
|
|
|
|
object: str
|
|
"""The object type, which is always "embedding" """
|
|
|
|
usage: Optional[Usage] = None
|
|
"""Usage statistics for the embedding request."""
|
|
|
|
_hidden_params: dict = {}
|
|
|
|
def __init__(
|
|
self, model=None, usage=None, stream=False, response_ms=None, data=None
|
|
):
|
|
object = "list"
|
|
if response_ms:
|
|
_response_ms = response_ms
|
|
else:
|
|
_response_ms = None
|
|
if data:
|
|
data = data
|
|
else:
|
|
data = None
|
|
|
|
if usage:
|
|
usage = usage
|
|
else:
|
|
usage = Usage()
|
|
|
|
model = model
|
|
super().__init__(model=model, object=object, data=data, usage=usage)
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
def json(self, **kwargs):
|
|
try:
|
|
return self.model_dump() # noqa
|
|
except:
|
|
# if using pydantic v1
|
|
return self.dict()
|
|
|
|
|
|
class TextChoices(OpenAIObject):
|
|
def __init__(self, finish_reason=None, index=0, text=None, logprobs=None, **params):
|
|
super(TextChoices, self).__init__(**params)
|
|
if finish_reason:
|
|
self.finish_reason = map_finish_reason(finish_reason)
|
|
else:
|
|
self.finish_reason = None
|
|
self.index = index
|
|
if text is not None:
|
|
self.text = text
|
|
else:
|
|
self.text = None
|
|
if logprobs:
|
|
self.logprobs = []
|
|
else:
|
|
self.logprobs = logprobs
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class TextCompletionResponse(OpenAIObject):
|
|
"""
|
|
{
|
|
"id": response["id"],
|
|
"object": "text_completion",
|
|
"created": response["created"],
|
|
"model": response["model"],
|
|
"choices": [
|
|
{
|
|
"text": response["choices"][0]["message"]["content"],
|
|
"index": response["choices"][0]["index"],
|
|
"logprobs": transformed_logprobs,
|
|
"finish_reason": response["choices"][0]["finish_reason"]
|
|
}
|
|
],
|
|
"usage": response["usage"]
|
|
}
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
id=None,
|
|
choices=None,
|
|
created=None,
|
|
model=None,
|
|
usage=None,
|
|
stream=False,
|
|
response_ms=None,
|
|
**params,
|
|
):
|
|
super(TextCompletionResponse, self).__init__(**params)
|
|
if stream:
|
|
self.object = "text_completion.chunk"
|
|
self.choices = [TextChoices()]
|
|
else:
|
|
self.object = "text_completion"
|
|
self.choices = [TextChoices()]
|
|
if id is None:
|
|
self.id = _generate_id()
|
|
else:
|
|
self.id = id
|
|
if created is None:
|
|
self.created = int(time.time())
|
|
else:
|
|
self.created = created
|
|
if response_ms:
|
|
self._response_ms = response_ms
|
|
else:
|
|
self._response_ms = None
|
|
self.model = model
|
|
if usage:
|
|
self.usage = usage
|
|
else:
|
|
self.usage = Usage()
|
|
self._hidden_params = (
|
|
{}
|
|
) # used in case users want to access the original model response
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
|
|
class ImageResponse(OpenAIObject):
|
|
created: Optional[int] = None
|
|
|
|
data: Optional[list] = None
|
|
|
|
usage: Optional[dict] = None
|
|
|
|
_hidden_params: dict = {}
|
|
|
|
def __init__(self, created=None, data=None, response_ms=None):
|
|
if response_ms:
|
|
_response_ms = response_ms
|
|
else:
|
|
_response_ms = None
|
|
if data:
|
|
data = data
|
|
else:
|
|
data = None
|
|
|
|
if created:
|
|
created = created
|
|
else:
|
|
created = None
|
|
|
|
super().__init__(data=data, created=created)
|
|
self.usage = {"prompt_tokens": 0, "completion_tokens": 0, "total_tokens": 0}
|
|
|
|
def __contains__(self, key):
|
|
# Define custom behavior for the 'in' operator
|
|
return hasattr(self, key)
|
|
|
|
def get(self, key, default=None):
|
|
# Custom .get() method to access attributes with a default value if the attribute doesn't exist
|
|
return getattr(self, key, default)
|
|
|
|
def __getitem__(self, key):
|
|
# Allow dictionary-style access to attributes
|
|
return getattr(self, key)
|
|
|
|
def __setitem__(self, key, value):
|
|
# Allow dictionary-style assignment of attributes
|
|
setattr(self, key, value)
|
|
|
|
def json(self, **kwargs):
|
|
try:
|
|
return self.model_dump() # noqa
|
|
except:
|
|
# if using pydantic v1
|
|
return self.dict()
|
|
|
|
|
|
############################################################
|
|
def print_verbose(print_statement):
|
|
try:
|
|
if litellm.set_verbose:
|
|
print(print_statement) # noqa
|
|
except:
|
|
pass
|
|
|
|
|
|
####### LOGGING ###################
|
|
from enum import Enum
|
|
|
|
|
|
class CallTypes(Enum):
|
|
embedding = "embedding"
|
|
aembedding = "aembedding"
|
|
completion = "completion"
|
|
acompletion = "acompletion"
|
|
atext_completion = "atext_completion"
|
|
text_completion = "text_completion"
|
|
image_generation = "image_generation"
|
|
aimage_generation = "aimage_generation"
|
|
|
|
|
|
# Logging function -> log the exact model details + what's being sent | Non-Blocking
|
|
class Logging:
|
|
global supabaseClient, liteDebuggerClient, promptLayerLogger, weightsBiasesLogger, langsmithLogger, capture_exception, add_breadcrumb, llmonitorLogger
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
messages,
|
|
stream,
|
|
call_type,
|
|
start_time,
|
|
litellm_call_id,
|
|
function_id,
|
|
):
|
|
if call_type not in [item.value for item in CallTypes]:
|
|
allowed_values = ", ".join([item.value for item in CallTypes])
|
|
raise ValueError(
|
|
f"Invalid call_type {call_type}. Allowed values: {allowed_values}"
|
|
)
|
|
self.model = model
|
|
self.messages = messages
|
|
self.stream = stream
|
|
self.start_time = start_time # log the call start time
|
|
self.call_type = call_type
|
|
self.litellm_call_id = litellm_call_id
|
|
self.function_id = function_id
|
|
self.streaming_chunks = [] # for generating complete stream response
|
|
self.model_call_details = {}
|
|
|
|
def update_environment_variables(
|
|
self, model, user, optional_params, litellm_params, **additional_params
|
|
):
|
|
self.optional_params = optional_params
|
|
self.model = model
|
|
self.user = user
|
|
self.litellm_params = litellm_params
|
|
self.logger_fn = litellm_params["logger_fn"]
|
|
print_verbose(f"self.optional_params: {self.optional_params}")
|
|
self.model_call_details = {
|
|
"model": self.model,
|
|
"messages": self.messages,
|
|
"optional_params": self.optional_params,
|
|
"litellm_params": self.litellm_params,
|
|
"start_time": self.start_time,
|
|
"stream": self.stream,
|
|
"user": user,
|
|
"call_type": str(self.call_type),
|
|
**self.optional_params,
|
|
**additional_params,
|
|
}
|
|
|
|
def _pre_call(self, input, api_key, model=None, additional_args={}):
|
|
"""
|
|
Common helper function across the sync + async pre-call function
|
|
"""
|
|
# print_verbose(f"logging pre call for model: {self.model} with call type: {self.call_type}")
|
|
self.model_call_details["input"] = input
|
|
self.model_call_details["api_key"] = api_key
|
|
self.model_call_details["additional_args"] = additional_args
|
|
self.model_call_details["log_event_type"] = "pre_api_call"
|
|
if (
|
|
model
|
|
): # if model name was changes pre-call, overwrite the initial model call name with the new one
|
|
self.model_call_details["model"] = model
|
|
|
|
def pre_call(self, input, api_key, model=None, additional_args={}):
|
|
# Log the exact input to the LLM API
|
|
litellm.error_logs["PRE_CALL"] = locals()
|
|
try:
|
|
self._pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
model=model,
|
|
additional_args=additional_args,
|
|
)
|
|
|
|
# User Logging -> if you pass in a custom logging function
|
|
headers = additional_args.get("headers", {})
|
|
if headers is None:
|
|
headers = {}
|
|
data = additional_args.get("complete_input_dict", {})
|
|
api_base = additional_args.get("api_base", "")
|
|
masked_headers = {
|
|
k: (v[:-20] + "*" * 20) if (isinstance(v, str) and len(v) > 20) else v
|
|
for k, v in headers.items()
|
|
}
|
|
formatted_headers = " ".join(
|
|
[f"-H '{k}: {v}'" for k, v in masked_headers.items()]
|
|
)
|
|
|
|
print_verbose(f"PRE-API-CALL ADDITIONAL ARGS: {additional_args}")
|
|
|
|
curl_command = "\n\nPOST Request Sent from LiteLLM:\n"
|
|
curl_command += "curl -X POST \\\n"
|
|
curl_command += f"{api_base} \\\n"
|
|
curl_command += (
|
|
f"{formatted_headers} \\\n" if formatted_headers.strip() != "" else ""
|
|
)
|
|
curl_command += f"-d '{str(data)}'\n"
|
|
if additional_args.get("request_str", None) is not None:
|
|
# print the sagemaker / bedrock client request
|
|
curl_command = "\nRequest Sent from LiteLLM:\n"
|
|
curl_command += additional_args.get("request_str", None)
|
|
elif api_base == "":
|
|
curl_command = self.model_call_details
|
|
print_verbose(f"\033[92m{curl_command}\033[0m\n")
|
|
if self.logger_fn and callable(self.logger_fn):
|
|
try:
|
|
self.logger_fn(
|
|
self.model_call_details
|
|
) # Expectation: any logger function passed in by the user should accept a dict object
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
|
|
if litellm.max_budget and self.stream:
|
|
start_time = self.start_time
|
|
end_time = (
|
|
self.start_time
|
|
) # no time has passed as the call hasn't been made yet
|
|
time_diff = (end_time - start_time).total_seconds()
|
|
float_diff = float(time_diff)
|
|
litellm._current_cost += litellm.completion_cost(
|
|
model=self.model,
|
|
prompt="".join(message["content"] for message in self.messages),
|
|
completion="",
|
|
total_time=float_diff,
|
|
)
|
|
|
|
# Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
|
|
for callback in litellm.input_callback:
|
|
try:
|
|
if callback == "supabase":
|
|
print_verbose("reaches supabase for logging!")
|
|
model = self.model_call_details["model"]
|
|
messages = self.model_call_details["input"]
|
|
print_verbose(f"supabaseClient: {supabaseClient}")
|
|
supabaseClient.input_log_event(
|
|
model=model,
|
|
messages=messages,
|
|
end_user=self.model_call_details.get("user", "default"),
|
|
litellm_call_id=self.litellm_params["litellm_call_id"],
|
|
print_verbose=print_verbose,
|
|
)
|
|
|
|
elif callback == "lite_debugger":
|
|
print_verbose(
|
|
f"reaches litedebugger for logging! - model_call_details {self.model_call_details}"
|
|
)
|
|
model = self.model_call_details["model"]
|
|
messages = self.model_call_details["input"]
|
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
|
liteDebuggerClient.input_log_event(
|
|
model=model,
|
|
messages=messages,
|
|
end_user=self.model_call_details.get("user", "default"),
|
|
litellm_call_id=self.litellm_params["litellm_call_id"],
|
|
litellm_params=self.model_call_details["litellm_params"],
|
|
optional_params=self.model_call_details["optional_params"],
|
|
print_verbose=print_verbose,
|
|
call_type=self.call_type,
|
|
)
|
|
elif callback == "sentry" and add_breadcrumb:
|
|
print_verbose("reaches sentry breadcrumbing")
|
|
add_breadcrumb(
|
|
category="litellm.llm_call",
|
|
message=f"Model Call Details pre-call: {self.model_call_details}",
|
|
level="info",
|
|
)
|
|
elif isinstance(callback, CustomLogger): # custom logger class
|
|
callback.log_pre_api_call(
|
|
model=self.model,
|
|
messages=self.messages,
|
|
kwargs=self.model_call_details,
|
|
)
|
|
elif callable(callback): # custom logger functions
|
|
customLogger.log_input_event(
|
|
model=self.model,
|
|
messages=self.messages,
|
|
kwargs=self.model_call_details,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while input logging with integrations {traceback.format_exc()}"
|
|
)
|
|
print_verbose(
|
|
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
|
|
)
|
|
if capture_exception: # log this error to sentry for debugging
|
|
capture_exception(e)
|
|
except:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
print_verbose(
|
|
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
|
|
)
|
|
if capture_exception: # log this error to sentry for debugging
|
|
capture_exception(e)
|
|
|
|
async def async_pre_call(
|
|
self, result=None, start_time=None, end_time=None, **kwargs
|
|
):
|
|
"""
|
|
 Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
|
|
"""
|
|
start_time, end_time, result = self._success_handler_helper_fn(
|
|
start_time=start_time, end_time=end_time, result=result
|
|
)
|
|
print_verbose(f"Async input callbacks: {litellm._async_input_callback}")
|
|
for callback in litellm._async_input_callback:
|
|
try:
|
|
if isinstance(callback, CustomLogger): # custom logger class
|
|
print_verbose(f"Async input callbacks: CustomLogger")
|
|
asyncio.create_task(
|
|
callback.async_log_input_event(
|
|
model=self.model,
|
|
messages=self.messages,
|
|
kwargs=self.model_call_details,
|
|
)
|
|
)
|
|
if callable(callback): # custom logger functions
|
|
print_verbose(f"Async success callbacks: async_log_event")
|
|
asyncio.create_task(
|
|
customLogger.async_log_input_event(
|
|
model=self.model,
|
|
messages=self.messages,
|
|
kwargs=self.model_call_details,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
)
|
|
except:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
|
|
)
|
|
|
|
def post_call(
|
|
self, original_response, input=None, api_key=None, additional_args={}
|
|
):
|
|
# Log the exact result from the LLM API, for streaming - log the type of response received
|
|
litellm.error_logs["POST_CALL"] = locals()
|
|
try:
|
|
self.model_call_details["input"] = input
|
|
self.model_call_details["api_key"] = api_key
|
|
self.model_call_details["original_response"] = original_response
|
|
self.model_call_details["additional_args"] = additional_args
|
|
self.model_call_details["log_event_type"] = "post_api_call"
|
|
|
|
# User Logging -> if you pass in a custom logging function
|
|
print_verbose(
|
|
f"RAW RESPONSE:\n{self.model_call_details.get('original_response', self.model_call_details)}\n\n"
|
|
)
|
|
print_verbose(
|
|
f"Logging Details Post-API Call: logger_fn - {self.logger_fn} | callable(logger_fn) - {callable(self.logger_fn)}"
|
|
)
|
|
print_verbose(
|
|
f"Logging Details Post-API Call: LiteLLM Params: {self.model_call_details}"
|
|
)
|
|
if self.logger_fn and callable(self.logger_fn):
|
|
try:
|
|
self.logger_fn(
|
|
self.model_call_details
|
|
) # Expectation: any logger function passed in by the user should accept a dict object
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
|
|
# Input Integration Logging -> If you want to log the fact that an attempt to call the model was made
|
|
for callback in litellm.input_callback:
|
|
try:
|
|
if callback == "lite_debugger":
|
|
print_verbose("reaches litedebugger for post-call logging!")
|
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
|
liteDebuggerClient.post_call_log_event(
|
|
original_response=original_response,
|
|
litellm_call_id=self.litellm_params["litellm_call_id"],
|
|
print_verbose=print_verbose,
|
|
call_type=self.call_type,
|
|
stream=self.stream,
|
|
)
|
|
elif callback == "sentry" and add_breadcrumb:
|
|
print_verbose("reaches sentry breadcrumbing")
|
|
add_breadcrumb(
|
|
category="litellm.llm_call",
|
|
message=f"Model Call Details post-call: {self.model_call_details}",
|
|
level="info",
|
|
)
|
|
elif isinstance(callback, CustomLogger): # custom logger class
|
|
callback.log_post_api_call(
|
|
kwargs=self.model_call_details,
|
|
response_obj=None,
|
|
start_time=self.start_time,
|
|
end_time=None,
|
|
)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while post-call logging with integrations {traceback.format_exc()}"
|
|
)
|
|
print_verbose(
|
|
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
|
|
)
|
|
if capture_exception: # log this error to sentry for debugging
|
|
capture_exception(e)
|
|
except:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
def _success_handler_helper_fn(
|
|
self, result=None, start_time=None, end_time=None, cache_hit=None
|
|
):
|
|
try:
|
|
if start_time is None:
|
|
start_time = self.start_time
|
|
if end_time is None:
|
|
end_time = datetime.datetime.now()
|
|
self.model_call_details["log_event_type"] = "successful_api_call"
|
|
self.model_call_details["end_time"] = end_time
|
|
self.model_call_details["cache_hit"] = cache_hit
|
|
|
|
if litellm.max_budget and self.stream:
|
|
time_diff = (end_time - start_time).total_seconds()
|
|
float_diff = float(time_diff)
|
|
litellm._current_cost += litellm.completion_cost(
|
|
model=self.model,
|
|
prompt="",
|
|
completion=result["content"],
|
|
total_time=float_diff,
|
|
)
|
|
|
|
return start_time, end_time, result
|
|
except Exception as e:
|
|
print_verbose(f"[Non-Blocking] LiteLLM.Success_Call Error: {str(e)}")
|
|
|
|
def success_handler(
|
|
self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
|
|
):
|
|
print_verbose(f"Logging Details LiteLLM-Success Call")
|
|
# print(f"original response in success handler: {self.model_call_details['original_response']}")
|
|
try:
|
|
print_verbose(f"success callbacks: {litellm.success_callback}")
|
|
## BUILD COMPLETE STREAMED RESPONSE
|
|
complete_streaming_response = None
|
|
if (
|
|
self.stream
|
|
and self.model_call_details.get("litellm_params", {}).get(
|
|
"acompletion", False
|
|
)
|
|
== False
|
|
): # only call stream chunk builder if it's not acompletion()
|
|
if (
|
|
result.choices[0].finish_reason is not None
|
|
): # if it's the last chunk
|
|
self.streaming_chunks.append(result)
|
|
# print_verbose(f"final set of received chunks: {self.streaming_chunks}")
|
|
try:
|
|
complete_streaming_response = litellm.stream_chunk_builder(
|
|
self.streaming_chunks,
|
|
messages=self.model_call_details.get("messages", None),
|
|
)
|
|
except:
|
|
complete_streaming_response = None
|
|
else:
|
|
self.streaming_chunks.append(result)
|
|
|
|
if complete_streaming_response:
|
|
self.model_call_details[
|
|
"complete_streaming_response"
|
|
] = complete_streaming_response
|
|
|
|
start_time, end_time, result = self._success_handler_helper_fn(
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
result=result,
|
|
cache_hit=cache_hit,
|
|
)
|
|
for callback in litellm.success_callback:
|
|
try:
|
|
if callback == "lite_debugger":
|
|
print_verbose("reaches lite_debugger for logging!")
|
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
|
print_verbose(
|
|
f"liteDebuggerClient details function {self.call_type} and stream set to {self.stream}"
|
|
)
|
|
liteDebuggerClient.log_event(
|
|
end_user=kwargs.get("user", "default"),
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
litellm_call_id=self.litellm_call_id,
|
|
print_verbose=print_verbose,
|
|
call_type=self.call_type,
|
|
stream=self.stream,
|
|
)
|
|
if callback == "promptlayer":
|
|
print_verbose("reaches promptlayer for logging!")
|
|
promptLayerLogger.log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "supabase":
|
|
print_verbose("reaches supabase for logging!")
|
|
kwargs = self.model_call_details
|
|
|
|
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
return
|
|
else:
|
|
print_verbose("reaches supabase for streaming logging!")
|
|
result = kwargs["complete_streaming_response"]
|
|
|
|
model = kwargs["model"]
|
|
messages = kwargs["messages"]
|
|
optional_params = kwargs.get("optional_params", {})
|
|
litellm_params = kwargs.get("litellm_params", {})
|
|
supabaseClient.log_event(
|
|
model=model,
|
|
messages=messages,
|
|
end_user=optional_params.get("user", "default"),
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
litellm_call_id=litellm_params.get(
|
|
"litellm_call_id", str(uuid.uuid4())
|
|
),
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "wandb":
|
|
print_verbose("reaches wandb for logging!")
|
|
weightsBiasesLogger.log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "langsmith":
|
|
print_verbose("reaches langsmith for logging!")
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
break
|
|
else:
|
|
print_verbose("reaches langfuse for streaming logging!")
|
|
result = kwargs["complete_streaming_response"]
|
|
langsmithLogger.log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "llmonitor":
|
|
print_verbose("reaches llmonitor for logging!")
|
|
model = self.model
|
|
|
|
input = self.model_call_details.get(
|
|
"messages", self.model_call_details.get("input", None)
|
|
)
|
|
|
|
# if contains input, it's 'embedding', otherwise 'llm'
|
|
type = (
|
|
"embed"
|
|
if self.call_type == CallTypes.embedding.value
|
|
else "llm"
|
|
)
|
|
|
|
llmonitorLogger.log_event(
|
|
type=type,
|
|
event="end",
|
|
model=model,
|
|
input=input,
|
|
user_id=self.model_call_details.get("user", "default"),
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
run_id=self.litellm_call_id,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "helicone":
|
|
print_verbose("reaches helicone for logging!")
|
|
model = self.model
|
|
messages = kwargs["messages"]
|
|
heliconeLogger.log_success(
|
|
model=model,
|
|
messages=messages,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "langfuse":
|
|
global langFuseLogger
|
|
print_verbose("reaches langfuse for logging!")
|
|
kwargs = {}
|
|
for k, v in self.model_call_details.items():
|
|
if (
|
|
k != "original_response"
|
|
): # copy.deepcopy raises errors as this could be a coroutine
|
|
kwargs[k] = v
|
|
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
break
|
|
else:
|
|
print_verbose("reaches langfuse for streaming logging!")
|
|
result = kwargs["complete_streaming_response"]
|
|
if langFuseLogger is None:
|
|
langFuseLogger = LangFuseLogger()
|
|
langFuseLogger.log_event(
|
|
kwargs=kwargs,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
user_id=kwargs.get("user", None),
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "cache" and litellm.cache is not None:
|
|
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
|
|
print_verbose("success_callback: reaches cache for logging!")
|
|
kwargs = self.model_call_details
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
print_verbose(
|
|
f"success_callback: reaches cache for logging, there is no complete_streaming_response. Kwargs={kwargs}\n\n"
|
|
)
|
|
return
|
|
else:
|
|
print_verbose(
|
|
"success_callback: reaches cache for logging, there is a complete_streaming_response. Adding to cache"
|
|
)
|
|
result = kwargs["complete_streaming_response"]
|
|
# only add to cache once we have a complete streaming response
|
|
litellm.cache.add_cache(result, **kwargs)
|
|
if callback == "traceloop":
|
|
deep_copy = {}
|
|
for k, v in self.model_call_details.items():
|
|
if k != "original_response":
|
|
deep_copy[k] = v
|
|
traceloopLogger.log_event(
|
|
kwargs=deep_copy,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
elif (
|
|
isinstance(callback, CustomLogger)
|
|
and self.model_call_details.get("litellm_params", {}).get(
|
|
"acompletion", False
|
|
)
|
|
== False
|
|
and self.model_call_details.get("litellm_params", {}).get(
|
|
"aembedding", False
|
|
)
|
|
== False
|
|
): # custom logger class
|
|
print_verbose(f"success callbacks: Running Custom Logger Class")
|
|
if self.stream and complete_streaming_response is None:
|
|
callback.log_stream_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
if self.stream and complete_streaming_response:
|
|
self.model_call_details[
|
|
"complete_response"
|
|
] = self.model_call_details.get(
|
|
"complete_streaming_response", {}
|
|
)
|
|
result = self.model_call_details["complete_response"]
|
|
callback.log_success_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
if callable(callback): # custom logger functions
|
|
print_verbose(
|
|
f"success callbacks: Running Custom Callback Function"
|
|
)
|
|
customLogger.log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging with integrations {traceback.format_exc()}"
|
|
)
|
|
print_verbose(
|
|
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
|
|
)
|
|
if capture_exception: # log this error to sentry for debugging
|
|
capture_exception(e)
|
|
except:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
async def async_success_handler(
|
|
self, result=None, start_time=None, end_time=None, cache_hit=None, **kwargs
|
|
):
|
|
"""
|
|
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
|
|
"""
|
|
print_verbose(f"Async success callbacks: {litellm._async_success_callback}")
|
|
## BUILD COMPLETE STREAMED RESPONSE
|
|
complete_streaming_response = None
|
|
if self.stream:
|
|
if result.choices[0].finish_reason is not None: # if it's the last chunk
|
|
self.streaming_chunks.append(result)
|
|
# print_verbose(f"final set of received chunks: {self.streaming_chunks}")
|
|
try:
|
|
complete_streaming_response = litellm.stream_chunk_builder(
|
|
self.streaming_chunks,
|
|
messages=self.model_call_details.get("messages", None),
|
|
)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"Error occurred building stream chunk: {traceback.format_exc()}"
|
|
)
|
|
complete_streaming_response = None
|
|
else:
|
|
self.streaming_chunks.append(result)
|
|
if complete_streaming_response:
|
|
print_verbose("Async success callbacks: Got a complete streaming response")
|
|
self.model_call_details[
|
|
"complete_streaming_response"
|
|
] = complete_streaming_response
|
|
start_time, end_time, result = self._success_handler_helper_fn(
|
|
start_time=start_time, end_time=end_time, result=result, cache_hit=cache_hit
|
|
)
|
|
for callback in litellm._async_success_callback:
|
|
try:
|
|
if callback == "cache" and litellm.cache is not None:
|
|
# set_cache once complete streaming response is built
|
|
print_verbose("async success_callback: reaches cache for logging!")
|
|
kwargs = self.model_call_details
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
print_verbose(
|
|
f"async success_callback: reaches cache for logging, there is no complete_streaming_response. Kwargs={kwargs}\n\n"
|
|
)
|
|
return
|
|
else:
|
|
print_verbose(
|
|
"async success_callback: reaches cache for logging, there is a complete_streaming_response. Adding to cache"
|
|
)
|
|
result = kwargs["complete_streaming_response"]
|
|
# only add to cache once we have a complete streaming response
|
|
litellm.cache.add_cache(result, **kwargs)
|
|
if isinstance(callback, CustomLogger): # custom logger class
|
|
print_verbose(f"Async success callbacks: CustomLogger")
|
|
if self.stream:
|
|
if "complete_streaming_response" in self.model_call_details:
|
|
await callback.async_log_success_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=self.model_call_details[
|
|
"complete_streaming_response"
|
|
],
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await callback.async_log_stream_event( # [TODO]: move this to being an async log stream event function
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
else:
|
|
await callback.async_log_success_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
if callable(callback): # custom logger functions
|
|
print_verbose(f"Async success callbacks: async_log_event")
|
|
await customLogger.async_log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
if callback == "dynamodb":
|
|
global dynamoLogger
|
|
if dynamoLogger is None:
|
|
dynamoLogger = DyanmoDBLogger()
|
|
if self.stream:
|
|
if "complete_streaming_response" in self.model_call_details:
|
|
print_verbose(
|
|
"DynamoDB Logger: Got Stream Event - Completed Stream Response"
|
|
)
|
|
await dynamoLogger._async_log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=self.model_call_details[
|
|
"complete_streaming_response"
|
|
],
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
else:
|
|
print_verbose(
|
|
"DynamoDB Logger: Got Stream Event - No complete stream response as yet"
|
|
)
|
|
else:
|
|
await dynamoLogger._async_log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
if callback == "langfuse":
|
|
global langFuseLogger
|
|
print_verbose("reaches Async langfuse for logging!")
|
|
kwargs = {}
|
|
for k, v in self.model_call_details.items():
|
|
if (
|
|
k != "original_response"
|
|
): # copy.deepcopy raises errors as this could be a coroutine
|
|
kwargs[k] = v
|
|
# this only logs streaming once, complete_streaming_response exists i.e when stream ends
|
|
if self.stream:
|
|
if "complete_streaming_response" not in kwargs:
|
|
return
|
|
else:
|
|
print_verbose(
|
|
"reaches Async langfuse for streaming logging!"
|
|
)
|
|
result = kwargs["complete_streaming_response"]
|
|
if langFuseLogger is None:
|
|
langFuseLogger = LangFuseLogger()
|
|
await langFuseLogger._async_log_event(
|
|
kwargs=kwargs,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
user_id=kwargs.get("user", None),
|
|
print_verbose=print_verbose,
|
|
)
|
|
except:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
def _failure_handler_helper_fn(
|
|
self, exception, traceback_exception, start_time=None, end_time=None
|
|
):
|
|
if start_time is None:
|
|
start_time = self.start_time
|
|
if end_time is None:
|
|
end_time = datetime.datetime.now()
|
|
|
|
# on some exceptions, model_call_details is not always initialized, this ensures that we still log those exceptions
|
|
if not hasattr(self, "model_call_details"):
|
|
self.model_call_details = {}
|
|
|
|
self.model_call_details["log_event_type"] = "failed_api_call"
|
|
self.model_call_details["exception"] = exception
|
|
self.model_call_details["traceback_exception"] = traceback_exception
|
|
self.model_call_details["end_time"] = end_time
|
|
self.model_call_details.setdefault("original_response", None)
|
|
return start_time, end_time
|
|
|
|
def failure_handler(
|
|
self, exception, traceback_exception, start_time=None, end_time=None
|
|
):
|
|
print_verbose(f"Logging Details LiteLLM-Failure Call")
|
|
try:
|
|
start_time, end_time = self._failure_handler_helper_fn(
|
|
exception=exception,
|
|
traceback_exception=traceback_exception,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
result = None # result sent to all loggers, init this to None incase it's not created
|
|
for callback in litellm.failure_callback:
|
|
try:
|
|
if callback == "lite_debugger":
|
|
print_verbose("reaches lite_debugger for logging!")
|
|
print_verbose(f"liteDebuggerClient: {liteDebuggerClient}")
|
|
result = {
|
|
"model": self.model,
|
|
"created": time.time(),
|
|
"error": traceback_exception,
|
|
"usage": {
|
|
"prompt_tokens": prompt_token_calculator(
|
|
self.model, messages=self.messages
|
|
),
|
|
"completion_tokens": 0,
|
|
},
|
|
}
|
|
liteDebuggerClient.log_event(
|
|
model=self.model,
|
|
messages=self.messages,
|
|
end_user=self.model_call_details.get("user", "default"),
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
litellm_call_id=self.litellm_call_id,
|
|
print_verbose=print_verbose,
|
|
call_type=self.call_type,
|
|
stream=self.stream,
|
|
)
|
|
elif callback == "llmonitor":
|
|
print_verbose("reaches llmonitor for logging error!")
|
|
|
|
model = self.model
|
|
|
|
input = self.model_call_details["input"]
|
|
|
|
type = (
|
|
"embed"
|
|
if self.call_type == CallTypes.embedding.value
|
|
else "llm"
|
|
)
|
|
|
|
llmonitorLogger.log_event(
|
|
type=type,
|
|
event="error",
|
|
user_id=self.model_call_details.get("user", "default"),
|
|
model=model,
|
|
input=input,
|
|
error=traceback_exception,
|
|
run_id=self.litellm_call_id,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
elif callback == "sentry":
|
|
print_verbose("sending exception to sentry")
|
|
if capture_exception:
|
|
capture_exception(exception)
|
|
else:
|
|
print_verbose(
|
|
f"capture exception not initialized: {capture_exception}"
|
|
)
|
|
elif callable(callback): # custom logger functions
|
|
customLogger.log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
elif (
|
|
isinstance(callback, CustomLogger)
|
|
and self.model_call_details.get("litellm_params", {}).get(
|
|
"acompletion", False
|
|
)
|
|
== False
|
|
and self.model_call_details.get("litellm_params", {}).get(
|
|
"aembedding", False
|
|
)
|
|
== False
|
|
): # custom logger class
|
|
callback.log_failure_event(
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
response_obj=result,
|
|
kwargs=self.model_call_details,
|
|
)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging with integrations {traceback.format_exc()}"
|
|
)
|
|
print_verbose(
|
|
f"LiteLLM.Logging: is sentry capture exception initialized {capture_exception}"
|
|
)
|
|
if capture_exception: # log this error to sentry for debugging
|
|
capture_exception(e)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while failure logging {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
async def async_failure_handler(
|
|
self, exception, traceback_exception, start_time=None, end_time=None
|
|
):
|
|
"""
|
|
Implementing async callbacks, to handle asyncio event loop issues when custom integrations need to use async functions.
|
|
"""
|
|
start_time, end_time = self._failure_handler_helper_fn(
|
|
exception=exception,
|
|
traceback_exception=traceback_exception,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
result = None # result sent to all loggers, init this to None incase it's not created
|
|
for callback in litellm._async_failure_callback:
|
|
try:
|
|
if isinstance(callback, CustomLogger): # custom logger class
|
|
await callback.async_log_failure_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
)
|
|
if callable(callback): # custom logger functions
|
|
await customLogger.async_log_event(
|
|
kwargs=self.model_call_details,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
callback_func=callback,
|
|
)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while success logging {traceback.format_exc()}"
|
|
)
|
|
|
|
|
|
def exception_logging(
|
|
additional_args={},
|
|
logger_fn=None,
|
|
exception=None,
|
|
):
|
|
try:
|
|
model_call_details = {}
|
|
if exception:
|
|
model_call_details["exception"] = exception
|
|
model_call_details["additional_args"] = additional_args
|
|
# User Logging -> if you pass in a custom logging function or want to use sentry breadcrumbs
|
|
print_verbose(
|
|
f"Logging Details: logger_fn - {logger_fn} | callable(logger_fn) - {callable(logger_fn)}"
|
|
)
|
|
if logger_fn and callable(logger_fn):
|
|
try:
|
|
logger_fn(
|
|
model_call_details
|
|
) # Expectation: any logger function passed in by the user should accept a dict object
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
except Exception as e:
|
|
print_verbose(
|
|
f"LiteLLM.LoggingError: [Non-Blocking] Exception occurred while logging {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
|
|
####### RULES ###################
|
|
|
|
|
|
class Rules:
|
|
"""
|
|
Fail calls based on the input or llm api output
|
|
|
|
Example usage:
|
|
import litellm
|
|
def my_custom_rule(input): # receives the model response
|
|
if "i don't think i can answer" in input: # trigger fallback if the model refuses to answer
|
|
return False
|
|
return True
|
|
|
|
litellm.post_call_rules = [my_custom_rule] # have these be functions that can be called to fail a call
|
|
|
|
response = litellm.completion(model="gpt-3.5-turbo", messages=[{"role": "user",
|
|
"content": "Hey, how's it going?"}], fallbacks=["openrouter/mythomax"])
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
def pre_call_rules(self, input: str, model: str):
|
|
for rule in litellm.pre_call_rules:
|
|
if callable(rule):
|
|
decision = rule(input)
|
|
if decision is False:
|
|
raise litellm.APIResponseValidationError(message="LLM Response failed post-call-rule check", llm_provider="", model=model) # type: ignore
|
|
return True
|
|
|
|
def post_call_rules(self, input: str, model: str):
|
|
for rule in litellm.post_call_rules:
|
|
if callable(rule):
|
|
decision = rule(input)
|
|
if decision is False:
|
|
raise litellm.APIResponseValidationError(message="LLM Response failed post-call-rule check", llm_provider="", model=model) # type: ignore
|
|
return True
|
|
|
|
|
|
####### CLIENT ###################
|
|
# make it easy to log if completion/embedding runs succeeded or failed + see what happened | Non-Blocking
|
|
def client(original_function):
|
|
global liteDebuggerClient, get_all_keys
|
|
rules_obj = Rules()
|
|
|
|
def function_setup(
|
|
start_time, *args, **kwargs
|
|
): # just run once to check if user wants to send their data anywhere - PostHog/Sentry/Slack/etc.
|
|
try:
|
|
global callback_list, add_breadcrumb, user_logger_fn, Logging
|
|
function_id = kwargs["id"] if "id" in kwargs else None
|
|
if litellm.use_client or (
|
|
"use_client" in kwargs and kwargs["use_client"] == True
|
|
):
|
|
print_verbose(f"litedebugger initialized")
|
|
if "lite_debugger" not in litellm.input_callback:
|
|
litellm.input_callback.append("lite_debugger")
|
|
if "lite_debugger" not in litellm.success_callback:
|
|
litellm.success_callback.append("lite_debugger")
|
|
if "lite_debugger" not in litellm.failure_callback:
|
|
litellm.failure_callback.append("lite_debugger")
|
|
if len(litellm.callbacks) > 0:
|
|
for callback in litellm.callbacks:
|
|
if callback not in litellm.input_callback:
|
|
litellm.input_callback.append(callback)
|
|
if callback not in litellm.success_callback:
|
|
litellm.success_callback.append(callback)
|
|
if callback not in litellm.failure_callback:
|
|
litellm.failure_callback.append(callback)
|
|
if callback not in litellm._async_success_callback:
|
|
litellm._async_success_callback.append(callback)
|
|
if callback not in litellm._async_failure_callback:
|
|
litellm._async_failure_callback.append(callback)
|
|
print_verbose(
|
|
f"Initialized litellm callbacks, Async Success Callbacks: {litellm._async_success_callback}"
|
|
)
|
|
if (
|
|
len(litellm.input_callback) > 0
|
|
or len(litellm.success_callback) > 0
|
|
or len(litellm.failure_callback) > 0
|
|
) and len(callback_list) == 0:
|
|
callback_list = list(
|
|
set(
|
|
litellm.input_callback
|
|
+ litellm.success_callback
|
|
+ litellm.failure_callback
|
|
)
|
|
)
|
|
set_callbacks(callback_list=callback_list, function_id=function_id)
|
|
## ASYNC CALLBACKS
|
|
if len(litellm.input_callback) > 0:
|
|
removed_async_items = []
|
|
for index, callback in enumerate(litellm.input_callback):
|
|
if inspect.iscoroutinefunction(callback):
|
|
litellm._async_input_callback.append(callback)
|
|
removed_async_items.append(index)
|
|
|
|
# Pop the async items from input_callback in reverse order to avoid index issues
|
|
for index in reversed(removed_async_items):
|
|
litellm.input_callback.pop(index)
|
|
|
|
if len(litellm.success_callback) > 0:
|
|
removed_async_items = []
|
|
for index, callback in enumerate(litellm.success_callback):
|
|
if inspect.iscoroutinefunction(callback):
|
|
litellm._async_success_callback.append(callback)
|
|
removed_async_items.append(index)
|
|
elif callback == "dynamodb":
|
|
# dynamo is an async callback, it's used for the proxy and needs to be async
|
|
# we only support async dynamo db logging for acompletion/aembedding since that's used on proxy
|
|
litellm._async_success_callback.append(callback)
|
|
removed_async_items.append(index)
|
|
elif callback == "langfuse" and inspect.iscoroutinefunction(
|
|
original_function
|
|
):
|
|
# use async success callback for langfuse if this is litellm.acompletion(). Streaming logging does not work otherwise
|
|
litellm._async_success_callback.append(callback)
|
|
removed_async_items.append(index)
|
|
|
|
# Pop the async items from success_callback in reverse order to avoid index issues
|
|
for index in reversed(removed_async_items):
|
|
litellm.success_callback.pop(index)
|
|
|
|
if len(litellm.failure_callback) > 0:
|
|
removed_async_items = []
|
|
for index, callback in enumerate(litellm.failure_callback):
|
|
if inspect.iscoroutinefunction(callback):
|
|
litellm._async_failure_callback.append(callback)
|
|
removed_async_items.append(index)
|
|
|
|
# Pop the async items from failure_callback in reverse order to avoid index issues
|
|
for index in reversed(removed_async_items):
|
|
litellm.failure_callback.pop(index)
|
|
if add_breadcrumb:
|
|
add_breadcrumb(
|
|
category="litellm.llm_call",
|
|
message=f"Positional Args: {args}, Keyword Args: {kwargs}",
|
|
level="info",
|
|
)
|
|
if "logger_fn" in kwargs:
|
|
user_logger_fn = kwargs["logger_fn"]
|
|
# CRASH REPORTING TELEMETRY
|
|
crash_reporting(*args, **kwargs)
|
|
# INIT LOGGER - for user-specified integrations
|
|
model = args[0] if len(args) > 0 else kwargs.get("model", None)
|
|
call_type = original_function.__name__
|
|
if (
|
|
call_type == CallTypes.completion.value
|
|
or call_type == CallTypes.acompletion.value
|
|
):
|
|
messages = None
|
|
if len(args) > 1:
|
|
messages = args[1]
|
|
elif kwargs.get("messages", None):
|
|
messages = kwargs["messages"]
|
|
### PRE-CALL RULES ###
|
|
if (
|
|
isinstance(messages, list)
|
|
and len(messages) > 0
|
|
and isinstance(messages[0], dict)
|
|
and "content" in messages[0]
|
|
):
|
|
rules_obj.pre_call_rules(
|
|
input="".join(
|
|
m["content"]
|
|
for m in messages
|
|
if isinstance(m["content"], str)
|
|
),
|
|
model=model,
|
|
)
|
|
elif (
|
|
call_type == CallTypes.embedding.value
|
|
or call_type == CallTypes.aembedding.value
|
|
):
|
|
messages = args[1] if len(args) > 1 else kwargs["input"]
|
|
elif (
|
|
call_type == CallTypes.image_generation.value
|
|
or call_type == CallTypes.aimage_generation.value
|
|
):
|
|
messages = args[0] if len(args) > 0 else kwargs["prompt"]
|
|
elif (
|
|
call_type == CallTypes.atext_completion.value
|
|
or call_type == CallTypes.text_completion.value
|
|
):
|
|
messages = args[0] if len(args) > 0 else kwargs["prompt"]
|
|
stream = True if "stream" in kwargs and kwargs["stream"] == True else False
|
|
logging_obj = Logging(
|
|
model=model,
|
|
messages=messages,
|
|
stream=stream,
|
|
litellm_call_id=kwargs["litellm_call_id"],
|
|
function_id=function_id,
|
|
call_type=call_type,
|
|
start_time=start_time,
|
|
)
|
|
return logging_obj
|
|
except Exception as e:
|
|
import logging
|
|
|
|
logging.debug(
|
|
f"[Non-Blocking] {traceback.format_exc()}; args - {args}; kwargs - {kwargs}"
|
|
)
|
|
raise e
|
|
|
|
def post_call_processing(original_response, model):
|
|
try:
|
|
if original_response is None:
|
|
pass
|
|
else:
|
|
call_type = original_function.__name__
|
|
if (
|
|
call_type == CallTypes.completion.value
|
|
or call_type == CallTypes.acompletion.value
|
|
):
|
|
model_response = original_response["choices"][0]["message"][
|
|
"content"
|
|
]
|
|
### POST-CALL RULES ###
|
|
rules_obj.post_call_rules(input=model_response, model=model)
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def crash_reporting(*args, **kwargs):
|
|
if litellm.telemetry:
|
|
try:
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
exception = kwargs["exception"] if "exception" in kwargs else None
|
|
custom_llm_provider = (
|
|
kwargs["custom_llm_provider"]
|
|
if "custom_llm_provider" in kwargs
|
|
else None
|
|
)
|
|
safe_crash_reporting(
|
|
model=model,
|
|
exception=exception,
|
|
custom_llm_provider=custom_llm_provider,
|
|
) # log usage-crash details. Do not log any user details. If you want to turn this off, set `litellm.telemetry=False`.
|
|
except:
|
|
# [Non-Blocking Error]
|
|
pass
|
|
|
|
def wrapper(*args, **kwargs):
|
|
start_time = datetime.datetime.now()
|
|
result = None
|
|
logging_obj = kwargs.get("litellm_logging_obj", None)
|
|
|
|
# only set litellm_call_id if its not in kwargs
|
|
if "litellm_call_id" not in kwargs:
|
|
kwargs["litellm_call_id"] = str(uuid.uuid4())
|
|
try:
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
except:
|
|
model = None
|
|
call_type = original_function.__name__
|
|
if (
|
|
call_type != CallTypes.image_generation.value
|
|
and call_type != CallTypes.text_completion.value
|
|
):
|
|
raise ValueError("model param not passed in.")
|
|
|
|
try:
|
|
if logging_obj is None:
|
|
logging_obj = function_setup(start_time, *args, **kwargs)
|
|
kwargs["litellm_logging_obj"] = logging_obj
|
|
|
|
# CHECK FOR 'os.environ/' in kwargs
|
|
for k, v in kwargs.items():
|
|
if v is not None and isinstance(v, str) and v.startswith("os.environ/"):
|
|
kwargs[k] = litellm.get_secret(v)
|
|
# [OPTIONAL] CHECK BUDGET
|
|
if litellm.max_budget:
|
|
if litellm._current_cost > litellm.max_budget:
|
|
raise BudgetExceededError(
|
|
current_cost=litellm._current_cost,
|
|
max_budget=litellm.max_budget,
|
|
)
|
|
|
|
# [OPTIONAL] CHECK MAX RETRIES / REQUEST
|
|
if litellm.num_retries_per_request is not None:
|
|
# check if previous_models passed in as ['litellm_params']['metadata]['previous_models']
|
|
previous_models = kwargs.get("metadata", {}).get(
|
|
"previous_models", None
|
|
)
|
|
if previous_models is not None:
|
|
if litellm.num_retries_per_request <= len(previous_models):
|
|
raise Exception(f"Max retries per request hit!")
|
|
|
|
# [OPTIONAL] CHECK CACHE
|
|
print_verbose(
|
|
f"kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}"
|
|
)
|
|
# if caching is false, don't run this
|
|
if (
|
|
kwargs.get("caching", None) is None and litellm.cache is not None
|
|
) or kwargs.get(
|
|
"caching", False
|
|
) == True: # allow users to control returning cached responses from the completion function
|
|
# checking cache
|
|
print_verbose(f"INSIDE CHECKING CACHE")
|
|
if (
|
|
litellm.cache is not None
|
|
and str(original_function.__name__)
|
|
in litellm.cache.supported_call_types
|
|
):
|
|
print_verbose(f"Checking Cache")
|
|
preset_cache_key = litellm.cache.get_cache_key(*args, **kwargs)
|
|
kwargs[
|
|
"preset_cache_key"
|
|
] = preset_cache_key # for streaming calls, we need to pass the preset_cache_key
|
|
cached_result = litellm.cache.get_cache(*args, **kwargs)
|
|
if cached_result != None:
|
|
if "detail" in cached_result:
|
|
# implies an error occurred
|
|
pass
|
|
else:
|
|
call_type = original_function.__name__
|
|
print_verbose(
|
|
f"Cache Response Object routing: call_type - {call_type}; cached_result instace: {type(cached_result)}"
|
|
)
|
|
if call_type == CallTypes.completion.value and isinstance(
|
|
cached_result, dict
|
|
):
|
|
return convert_to_model_response_object(
|
|
response_object=cached_result,
|
|
model_response_object=ModelResponse(),
|
|
stream=kwargs.get("stream", False),
|
|
)
|
|
elif call_type == CallTypes.embedding.value and isinstance(
|
|
cached_result, dict
|
|
):
|
|
return convert_to_model_response_object(
|
|
response_object=cached_result,
|
|
response_type="embedding",
|
|
)
|
|
else:
|
|
return cached_result
|
|
# MODEL CALL
|
|
result = original_function(*args, **kwargs)
|
|
end_time = datetime.datetime.now()
|
|
if "stream" in kwargs and kwargs["stream"] == True:
|
|
# TODO: Add to cache for streaming
|
|
if (
|
|
"complete_response" in kwargs
|
|
and kwargs["complete_response"] == True
|
|
):
|
|
chunks = []
|
|
for idx, chunk in enumerate(result):
|
|
chunks.append(chunk)
|
|
return litellm.stream_chunk_builder(
|
|
chunks, messages=kwargs.get("messages", None)
|
|
)
|
|
else:
|
|
return result
|
|
elif "acompletion" in kwargs and kwargs["acompletion"] == True:
|
|
return result
|
|
elif "aembedding" in kwargs and kwargs["aembedding"] == True:
|
|
return result
|
|
elif "aimg_generation" in kwargs and kwargs["aimg_generation"] == True:
|
|
return result
|
|
|
|
### POST-CALL RULES ###
|
|
post_call_processing(original_response=result, model=model or None)
|
|
|
|
# [OPTIONAL] ADD TO CACHE
|
|
if (
|
|
litellm.cache is not None
|
|
and str(original_function.__name__)
|
|
in litellm.cache.supported_call_types
|
|
):
|
|
litellm.cache.add_cache(result, *args, **kwargs)
|
|
|
|
# LOG SUCCESS - handle streaming success logging in the _next_ object, remove `handle_success` once it's deprecated
|
|
print_verbose(f"Wrapper: Completed Call, calling success_handler")
|
|
threading.Thread(
|
|
target=logging_obj.success_handler, args=(result, start_time, end_time)
|
|
).start()
|
|
# RETURN RESULT
|
|
if hasattr(result, "_hidden_params"):
|
|
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
|
|
"id", None
|
|
)
|
|
result._response_ms = (
|
|
end_time - start_time
|
|
).total_seconds() * 1000 # return response latency in ms like openai
|
|
return result
|
|
except Exception as e:
|
|
call_type = original_function.__name__
|
|
if call_type == CallTypes.completion.value:
|
|
num_retries = (
|
|
kwargs.get("num_retries", None) or litellm.num_retries or None
|
|
)
|
|
litellm.num_retries = (
|
|
None # set retries to None to prevent infinite loops
|
|
)
|
|
context_window_fallback_dict = kwargs.get(
|
|
"context_window_fallback_dict", {}
|
|
)
|
|
|
|
if num_retries:
|
|
if isinstance(e, openai.APIError) or isinstance(e, openai.Timeout):
|
|
kwargs["num_retries"] = num_retries
|
|
return litellm.completion_with_retries(*args, **kwargs)
|
|
elif (
|
|
isinstance(e, litellm.exceptions.ContextWindowExceededError)
|
|
and context_window_fallback_dict
|
|
and model in context_window_fallback_dict
|
|
):
|
|
if len(args) > 0:
|
|
args[0] = context_window_fallback_dict[model]
|
|
else:
|
|
kwargs["model"] = context_window_fallback_dict[model]
|
|
return original_function(*args, **kwargs)
|
|
traceback_exception = traceback.format_exc()
|
|
crash_reporting(*args, **kwargs, exception=traceback_exception)
|
|
end_time = datetime.datetime.now()
|
|
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
|
|
if logging_obj:
|
|
logging_obj.failure_handler(
|
|
e, traceback_exception, start_time, end_time
|
|
) # DO NOT MAKE THREADED - router retry fallback relies on this!
|
|
my_thread = threading.Thread(
|
|
target=handle_failure,
|
|
args=(e, traceback_exception, start_time, end_time, args, kwargs),
|
|
) # don't interrupt execution of main thread
|
|
my_thread.start()
|
|
if hasattr(e, "message"):
|
|
if (
|
|
liteDebuggerClient and liteDebuggerClient.dashboard_url != None
|
|
): # make it easy to get to the debugger logs if you've initialized it
|
|
e.message += f"\n Check the log in your dashboard - {liteDebuggerClient.dashboard_url}"
|
|
raise e
|
|
|
|
async def wrapper_async(*args, **kwargs):
|
|
start_time = datetime.datetime.now()
|
|
result = None
|
|
logging_obj = kwargs.get("litellm_logging_obj", None)
|
|
# only set litellm_call_id if its not in kwargs
|
|
if "litellm_call_id" not in kwargs:
|
|
kwargs["litellm_call_id"] = str(uuid.uuid4())
|
|
try:
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
except:
|
|
if (
|
|
call_type != CallTypes.aimage_generation.value # model optional
|
|
and call_type != CallTypes.atext_completion.value # can also be engine
|
|
):
|
|
raise ValueError("model param not passed in.")
|
|
|
|
try:
|
|
if logging_obj is None:
|
|
logging_obj = function_setup(start_time, *args, **kwargs)
|
|
kwargs["litellm_logging_obj"] = logging_obj
|
|
|
|
# [OPTIONAL] CHECK BUDGET
|
|
if litellm.max_budget:
|
|
if litellm._current_cost > litellm.max_budget:
|
|
raise BudgetExceededError(
|
|
current_cost=litellm._current_cost,
|
|
max_budget=litellm.max_budget,
|
|
)
|
|
|
|
# [OPTIONAL] CHECK CACHE
|
|
print_verbose(f"litellm.cache: {litellm.cache}")
|
|
print_verbose(
|
|
f"kwargs[caching]: {kwargs.get('caching', False)}; litellm.cache: {litellm.cache}"
|
|
)
|
|
# if caching is false, don't run this
|
|
if (
|
|
kwargs.get("caching", None) is None and litellm.cache is not None
|
|
) or kwargs.get(
|
|
"caching", False
|
|
) == True: # allow users to control returning cached responses from the completion function
|
|
# checking cache
|
|
print_verbose(f"INSIDE CHECKING CACHE")
|
|
if (
|
|
litellm.cache is not None
|
|
and str(original_function.__name__)
|
|
in litellm.cache.supported_call_types
|
|
):
|
|
print_verbose(f"Checking Cache")
|
|
cached_result = litellm.cache.get_cache(*args, **kwargs)
|
|
if cached_result != None:
|
|
print_verbose(f"Cache Hit!")
|
|
call_type = original_function.__name__
|
|
if call_type == CallTypes.acompletion.value and isinstance(
|
|
cached_result, dict
|
|
):
|
|
if kwargs.get("stream", False) == True:
|
|
cached_result = convert_to_streaming_response_async(
|
|
response_object=cached_result,
|
|
)
|
|
else:
|
|
cached_result = convert_to_model_response_object(
|
|
response_object=cached_result,
|
|
model_response_object=ModelResponse(),
|
|
)
|
|
elif call_type == CallTypes.aembedding.value and isinstance(
|
|
cached_result, dict
|
|
):
|
|
cached_result = convert_to_model_response_object(
|
|
response_object=cached_result,
|
|
model_response_object=EmbeddingResponse(),
|
|
response_type="embedding",
|
|
)
|
|
# LOG SUCCESS
|
|
cache_hit = True
|
|
end_time = datetime.datetime.now()
|
|
(
|
|
model,
|
|
custom_llm_provider,
|
|
dynamic_api_key,
|
|
api_base,
|
|
) = litellm.get_llm_provider(
|
|
model=model,
|
|
custom_llm_provider=kwargs.get("custom_llm_provider", None),
|
|
api_base=kwargs.get("api_base", None),
|
|
api_key=kwargs.get("api_key", None),
|
|
)
|
|
print_verbose(
|
|
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
|
|
)
|
|
logging_obj.update_environment_variables(
|
|
model=model,
|
|
user=kwargs.get("user", None),
|
|
optional_params={},
|
|
litellm_params={
|
|
"logger_fn": kwargs.get("logger_fn", None),
|
|
"acompletion": True,
|
|
"metadata": kwargs.get("metadata", {}),
|
|
"model_info": kwargs.get("model_info", {}),
|
|
"proxy_server_request": kwargs.get(
|
|
"proxy_server_request", None
|
|
),
|
|
"preset_cache_key": kwargs.get(
|
|
"preset_cache_key", None
|
|
),
|
|
"stream_response": kwargs.get("stream_response", {}),
|
|
},
|
|
input=kwargs.get("messages", ""),
|
|
api_key=kwargs.get("api_key", None),
|
|
original_response=str(cached_result),
|
|
additional_args=None,
|
|
stream=kwargs.get("stream", False),
|
|
)
|
|
asyncio.create_task(
|
|
logging_obj.async_success_handler(
|
|
cached_result, start_time, end_time, cache_hit
|
|
)
|
|
)
|
|
threading.Thread(
|
|
target=logging_obj.success_handler,
|
|
args=(cached_result, start_time, end_time, cache_hit),
|
|
).start()
|
|
return cached_result
|
|
# MODEL CALL
|
|
result = await original_function(*args, **kwargs)
|
|
end_time = datetime.datetime.now()
|
|
if "stream" in kwargs and kwargs["stream"] == True:
|
|
if (
|
|
"complete_response" in kwargs
|
|
and kwargs["complete_response"] == True
|
|
):
|
|
chunks = []
|
|
for idx, chunk in enumerate(result):
|
|
chunks.append(chunk)
|
|
return litellm.stream_chunk_builder(
|
|
chunks, messages=kwargs.get("messages", None)
|
|
)
|
|
else:
|
|
return result
|
|
|
|
### POST-CALL RULES ###
|
|
post_call_processing(original_response=result, model=model)
|
|
|
|
# [OPTIONAL] ADD TO CACHE
|
|
if (
|
|
litellm.cache is not None
|
|
and str(original_function.__name__)
|
|
in litellm.cache.supported_call_types
|
|
):
|
|
if isinstance(result, litellm.ModelResponse) or isinstance(
|
|
result, litellm.EmbeddingResponse
|
|
):
|
|
asyncio.create_task(
|
|
litellm.cache._async_add_cache(result.json(), *args, **kwargs)
|
|
)
|
|
else:
|
|
asyncio.create_task(
|
|
litellm.cache._async_add_cache(result, *args, **kwargs)
|
|
)
|
|
# LOG SUCCESS - handle streaming success logging in the _next_ object
|
|
print_verbose(
|
|
f"Async Wrapper: Completed Call, calling async_success_handler: {logging_obj.async_success_handler}"
|
|
)
|
|
asyncio.create_task(
|
|
logging_obj.async_success_handler(result, start_time, end_time)
|
|
)
|
|
threading.Thread(
|
|
target=logging_obj.success_handler, args=(result, start_time, end_time)
|
|
).start()
|
|
# RETURN RESULT
|
|
if hasattr(result, "_hidden_params"):
|
|
result._hidden_params["model_id"] = kwargs.get("model_info", {}).get(
|
|
"id", None
|
|
)
|
|
if isinstance(result, ModelResponse):
|
|
result._response_ms = (
|
|
end_time - start_time
|
|
).total_seconds() * 1000 # return response latency in ms like openai
|
|
return result
|
|
except Exception as e:
|
|
traceback_exception = traceback.format_exc()
|
|
crash_reporting(*args, **kwargs, exception=traceback_exception)
|
|
end_time = datetime.datetime.now()
|
|
if logging_obj:
|
|
try:
|
|
logging_obj.failure_handler(
|
|
e, traceback_exception, start_time, end_time
|
|
) # DO NOT MAKE THREADED - router retry fallback relies on this!
|
|
except Exception as e:
|
|
raise e
|
|
try:
|
|
await logging_obj.async_failure_handler(
|
|
e, traceback_exception, start_time, end_time
|
|
)
|
|
except Exception as e:
|
|
raise e
|
|
|
|
call_type = original_function.__name__
|
|
if call_type == CallTypes.acompletion.value:
|
|
num_retries = (
|
|
kwargs.get("num_retries", None) or litellm.num_retries or None
|
|
)
|
|
litellm.num_retries = (
|
|
None # set retries to None to prevent infinite loops
|
|
)
|
|
context_window_fallback_dict = kwargs.get(
|
|
"context_window_fallback_dict", {}
|
|
)
|
|
|
|
if num_retries:
|
|
try:
|
|
kwargs["num_retries"] = num_retries
|
|
kwargs["original_function"] = original_function
|
|
if isinstance(
|
|
e, openai.RateLimitError
|
|
): # rate limiting specific error
|
|
kwargs["retry_strategy"] = "exponential_backoff_retry"
|
|
elif isinstance(e, openai.APIError): # generic api error
|
|
kwargs["retry_strategy"] = "constant_retry"
|
|
return await litellm.acompletion_with_retries(*args, **kwargs)
|
|
except:
|
|
pass
|
|
elif (
|
|
isinstance(e, litellm.exceptions.ContextWindowExceededError)
|
|
and context_window_fallback_dict
|
|
and model in context_window_fallback_dict
|
|
):
|
|
if len(args) > 0:
|
|
args[0] = context_window_fallback_dict[model]
|
|
else:
|
|
kwargs["model"] = context_window_fallback_dict[model]
|
|
return await original_function(*args, **kwargs)
|
|
raise e
|
|
|
|
is_coroutine = inspect.iscoroutinefunction(original_function)
|
|
|
|
# Return the appropriate wrapper based on the original function type
|
|
if is_coroutine:
|
|
return wrapper_async
|
|
else:
|
|
return wrapper
|
|
|
|
|
|
####### USAGE CALCULATOR ################
|
|
|
|
|
|
# Extract the number of billion parameters from the model name
|
|
# only used for together_computer LLMs
|
|
def get_model_params_and_category(model_name):
|
|
import re
|
|
|
|
model_name = model_name.lower()
|
|
params_match = re.search(
|
|
r"(\d+b)", model_name
|
|
) # catch all decimals like 3b, 70b, etc
|
|
category = None
|
|
if params_match != None:
|
|
params_match = params_match.group(1)
|
|
params_match = params_match.replace("b", "")
|
|
params_billion = float(params_match)
|
|
# Determine the category based on the number of parameters
|
|
if params_billion <= 3.0:
|
|
category = "together-ai-up-to-3b"
|
|
elif params_billion <= 7.0:
|
|
category = "together-ai-3.1b-7b"
|
|
elif params_billion <= 20.0:
|
|
category = "together-ai-7.1b-20b"
|
|
elif params_billion <= 40.0:
|
|
category = "together-ai-20.1b-40b"
|
|
elif params_billion <= 70.0:
|
|
category = "together-ai-40.1b-70b"
|
|
return category
|
|
|
|
return None
|
|
|
|
|
|
def get_replicate_completion_pricing(completion_response=None, total_time=0.0):
|
|
# see https://replicate.com/pricing
|
|
a100_40gb_price_per_second_public = 0.001150
|
|
# for all litellm currently supported LLMs, almost all requests go to a100_80gb
|
|
a100_80gb_price_per_second_public = (
|
|
0.001400 # assume all calls sent to A100 80GB for now
|
|
)
|
|
if total_time == 0.0:
|
|
start_time = completion_response["created"]
|
|
end_time = completion_response["ended"]
|
|
total_time = end_time - start_time
|
|
|
|
return a100_80gb_price_per_second_public * total_time
|
|
|
|
|
|
def _select_tokenizer(model: str):
|
|
# cohere
|
|
import pkg_resources
|
|
|
|
if model in litellm.cohere_models:
|
|
tokenizer = Tokenizer.from_pretrained("Cohere/command-nightly")
|
|
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
|
# anthropic
|
|
elif model in litellm.anthropic_models:
|
|
# Read the JSON file
|
|
filename = pkg_resources.resource_filename(
|
|
__name__, "llms/tokenizers/anthropic_tokenizer.json"
|
|
)
|
|
with open(filename, "r") as f:
|
|
json_data = json.load(f)
|
|
# Decode the JSON data from utf-8
|
|
json_data_decoded = json.dumps(json_data, ensure_ascii=False)
|
|
# Convert to str
|
|
json_str = str(json_data_decoded)
|
|
# load tokenizer
|
|
tokenizer = Tokenizer.from_str(json_str)
|
|
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
|
# llama2
|
|
elif "llama-2" in model.lower():
|
|
tokenizer = Tokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
return {"type": "huggingface_tokenizer", "tokenizer": tokenizer}
|
|
# default - tiktoken
|
|
else:
|
|
return {"type": "openai_tokenizer", "tokenizer": encoding}
|
|
|
|
|
|
def encode(model: str, text: str):
|
|
"""
|
|
Encodes the given text using the specified model.
|
|
|
|
Args:
|
|
model (str): The name of the model to use for tokenization.
|
|
text (str): The text to be encoded.
|
|
|
|
Returns:
|
|
enc: The encoded text.
|
|
"""
|
|
tokenizer_json = _select_tokenizer(model=model)
|
|
enc = tokenizer_json["tokenizer"].encode(text)
|
|
return enc
|
|
|
|
|
|
def decode(model: str, tokens: List[int]):
|
|
tokenizer_json = _select_tokenizer(model=model)
|
|
dec = tokenizer_json["tokenizer"].decode(tokens)
|
|
return dec
|
|
|
|
|
|
def openai_token_counter(
|
|
messages: Optional[list] = None,
|
|
model="gpt-3.5-turbo-0613",
|
|
text: Optional[str] = None,
|
|
is_tool_call: Optional[bool] = False,
|
|
):
|
|
"""
|
|
Return the number of tokens used by a list of messages.
|
|
|
|
Borrowed from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb.
|
|
"""
|
|
try:
|
|
encoding = tiktoken.encoding_for_model(model)
|
|
except KeyError:
|
|
print_verbose("Warning: model not found. Using cl100k_base encoding.")
|
|
encoding = tiktoken.get_encoding("cl100k_base")
|
|
if model == "gpt-3.5-turbo-0301":
|
|
tokens_per_message = (
|
|
4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
|
|
)
|
|
tokens_per_name = -1 # if there's a name, the role is omitted
|
|
elif model in litellm.open_ai_chat_completion_models:
|
|
tokens_per_message = 3
|
|
tokens_per_name = 1
|
|
elif model in litellm.azure_llms:
|
|
tokens_per_message = 3
|
|
tokens_per_name = 1
|
|
else:
|
|
raise NotImplementedError(
|
|
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
|
|
)
|
|
num_tokens = 0
|
|
|
|
if is_tool_call and text is not None:
|
|
# if it's a tool call we assembled 'text' in token_counter()
|
|
num_tokens = len(encoding.encode(text, disallowed_special=()))
|
|
elif messages is not None:
|
|
for message in messages:
|
|
num_tokens += tokens_per_message
|
|
for key, value in message.items():
|
|
if isinstance(value, str):
|
|
num_tokens += len(encoding.encode(value, disallowed_special=()))
|
|
if key == "name":
|
|
num_tokens += tokens_per_name
|
|
elif isinstance(value, List):
|
|
for c in value:
|
|
if c["type"] == "text":
|
|
text += c["text"]
|
|
elif c["type"] == "image_url":
|
|
if isinstance(c["image_url"], dict):
|
|
image_url_dict = c["image_url"]
|
|
detail = image_url_dict.get("detail", "auto")
|
|
url = image_url_dict.get("url")
|
|
num_tokens += calculage_img_tokens(
|
|
data=url, mode=detail
|
|
)
|
|
elif isinstance(c["image_url"], str):
|
|
image_url_str = c["image_url"]
|
|
num_tokens += calculage_img_tokens(
|
|
data=image_url_str, mode="auto"
|
|
)
|
|
elif text is not None:
|
|
num_tokens = len(encoding.encode(text, disallowed_special=()))
|
|
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
|
|
return num_tokens
|
|
|
|
|
|
def resize_image_high_res(width, height):
|
|
# Maximum dimensions for high res mode
|
|
max_short_side = 768
|
|
max_long_side = 2000
|
|
|
|
# Determine the longer and shorter sides
|
|
longer_side = max(width, height)
|
|
shorter_side = min(width, height)
|
|
|
|
# Calculate the aspect ratio
|
|
aspect_ratio = longer_side / shorter_side
|
|
|
|
# Resize based on the short side being 768px
|
|
if width <= height: # Portrait or square
|
|
resized_width = max_short_side
|
|
resized_height = int(resized_width * aspect_ratio)
|
|
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
|
if resized_height > max_long_side:
|
|
resized_height = max_long_side
|
|
resized_width = int(resized_height / aspect_ratio)
|
|
else: # Landscape
|
|
resized_height = max_short_side
|
|
resized_width = int(resized_height * aspect_ratio)
|
|
# if the long side exceeds the limit after resizing, adjust both sides accordingly
|
|
if resized_width > max_long_side:
|
|
resized_width = max_long_side
|
|
resized_height = int(resized_width / aspect_ratio)
|
|
|
|
return resized_width, resized_height
|
|
|
|
|
|
# Test the function with the given example
|
|
def calculate_tiles_needed(
|
|
resized_width, resized_height, tile_width=512, tile_height=512
|
|
):
|
|
tiles_across = (resized_width + tile_width - 1) // tile_width
|
|
tiles_down = (resized_height + tile_height - 1) // tile_height
|
|
total_tiles = tiles_across * tiles_down
|
|
return total_tiles
|
|
|
|
|
|
def get_image_dimensions(data):
|
|
img_data = None
|
|
|
|
# Check if data is a URL by trying to parse it
|
|
try:
|
|
response = requests.get(data)
|
|
response.raise_for_status() # Check if the request was successful
|
|
img_data = response.content
|
|
except Exception:
|
|
# Data is not a URL, handle as base64
|
|
header, encoded = data.split(",", 1)
|
|
img_data = base64.b64decode(encoded)
|
|
|
|
# Try to determine dimensions from headers
|
|
# This is a very simplistic check, primarily works with PNG and non-progressive JPEG
|
|
if img_data[:8] == b"\x89PNG\r\n\x1a\n":
|
|
# PNG Image; width and height are 4 bytes each and start at offset 16
|
|
width, height = struct.unpack(">ii", img_data[16:24])
|
|
return width, height
|
|
elif img_data[:2] == b"\xff\xd8":
|
|
# JPEG Image; for dimensions, SOF0 block (0xC0) gives dimensions at offset 3 for length, and then 5 and 7 for height and width
|
|
# This will NOT find dimensions for all JPEGs (e.g., progressive JPEGs)
|
|
# Find SOF0 marker (0xFF followed by 0xC0)
|
|
sof = re.search(b"\xff\xc0....", img_data)
|
|
if sof:
|
|
# Parse SOF0 block to find dimensions
|
|
height, width = struct.unpack(">HH", sof.group()[5:9])
|
|
return width, height
|
|
else:
|
|
return None, None
|
|
else:
|
|
# Unsupported format
|
|
return None, None
|
|
|
|
|
|
def calculage_img_tokens(
|
|
data,
|
|
mode: Literal["low", "high", "auto"] = "auto",
|
|
base_tokens: int = 85, # openai default - https://openai.com/pricing
|
|
):
|
|
if mode == "low" or mode == "auto":
|
|
return base_tokens
|
|
elif mode == "high":
|
|
width, height = get_image_dimensions(data=data)
|
|
resized_width, resized_height = resize_image_high_res(
|
|
width=width, height=height
|
|
)
|
|
tiles_needed_high_res = calculate_tiles_needed(resized_width, resized_height)
|
|
tile_tokens = (base_tokens * 2) * tiles_needed_high_res
|
|
total_tokens = base_tokens + tile_tokens
|
|
return total_tokens
|
|
|
|
|
|
def token_counter(
|
|
model="",
|
|
text: Optional[Union[str, List[str]]] = None,
|
|
messages: Optional[List] = None,
|
|
):
|
|
"""
|
|
Count the number of tokens in a given text using a specified model.
|
|
|
|
Args:
|
|
model (str): The name of the model to use for tokenization. Default is an empty string.
|
|
text (str): The raw text string to be passed to the model. Default is None.
|
|
messages (Optional[List[Dict[str, str]]]): Alternative to passing in text. A list of dictionaries representing messages with "role" and "content" keys. Default is None.
|
|
|
|
Returns:
|
|
int: The number of tokens in the text.
|
|
"""
|
|
# use tiktoken, anthropic, cohere or llama2's tokenizer depending on the model
|
|
is_tool_call = False
|
|
num_tokens = 0
|
|
if text == None:
|
|
if messages is not None:
|
|
print_verbose(f"token_counter messages received: {messages}")
|
|
text = ""
|
|
for message in messages:
|
|
if message.get("content", None) is not None:
|
|
content = message.get("content")
|
|
if isinstance(content, str):
|
|
text += message["content"]
|
|
elif isinstance(content, List):
|
|
for c in content:
|
|
if c["type"] == "text":
|
|
text += c["text"]
|
|
elif c["type"] == "image_url":
|
|
if isinstance(c["image_url"], dict):
|
|
image_url_dict = c["image_url"]
|
|
detail = image_url_dict.get("detail", "auto")
|
|
url = image_url_dict.get("url")
|
|
num_tokens += calculage_img_tokens(
|
|
data=url, mode=detail
|
|
)
|
|
elif isinstance(c["image_url"], str):
|
|
image_url_str = c["image_url"]
|
|
num_tokens += calculage_img_tokens(
|
|
data=image_url_str, mode="auto"
|
|
)
|
|
if "tool_calls" in message:
|
|
is_tool_call = True
|
|
for tool_call in message["tool_calls"]:
|
|
if "function" in tool_call:
|
|
function_arguments = tool_call["function"]["arguments"]
|
|
text += function_arguments
|
|
else:
|
|
raise ValueError("text and messages cannot both be None")
|
|
elif isinstance(text, List):
|
|
text = "".join(t for t in text if isinstance(t, str))
|
|
|
|
if model is not None:
|
|
tokenizer_json = _select_tokenizer(model=model)
|
|
if tokenizer_json["type"] == "huggingface_tokenizer":
|
|
enc = tokenizer_json["tokenizer"].encode(text)
|
|
num_tokens = len(enc.ids)
|
|
elif tokenizer_json["type"] == "openai_tokenizer":
|
|
if (
|
|
model in litellm.open_ai_chat_completion_models
|
|
or model in litellm.azure_llms
|
|
):
|
|
num_tokens = openai_token_counter(
|
|
text=text, model=model, messages=messages, is_tool_call=is_tool_call # type: ignore
|
|
)
|
|
else:
|
|
enc = tokenizer_json["tokenizer"].encode(text)
|
|
num_tokens = len(enc)
|
|
else:
|
|
num_tokens = len(encoding.encode(text)) # type: ignore
|
|
return num_tokens
|
|
|
|
|
|
def cost_per_token(model="", prompt_tokens=0, completion_tokens=0):
|
|
"""
|
|
Calculates the cost per token for a given model, prompt tokens, and completion tokens.
|
|
|
|
Parameters:
|
|
model (str): The name of the model to use. Default is ""
|
|
prompt_tokens (int): The number of tokens in the prompt.
|
|
completion_tokens (int): The number of tokens in the completion.
|
|
|
|
Returns:
|
|
tuple: A tuple containing the cost in USD dollars for prompt tokens and completion tokens, respectively.
|
|
"""
|
|
# given
|
|
prompt_tokens_cost_usd_dollar = 0
|
|
completion_tokens_cost_usd_dollar = 0
|
|
model_cost_ref = litellm.model_cost
|
|
# see this https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
|
|
if model in model_cost_ref:
|
|
prompt_tokens_cost_usd_dollar = (
|
|
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
|
|
)
|
|
completion_tokens_cost_usd_dollar = (
|
|
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
|
)
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
elif "ft:gpt-3.5-turbo" in model:
|
|
# fuzzy match ft:gpt-3.5-turbo:abcd-id-cool-litellm
|
|
prompt_tokens_cost_usd_dollar = (
|
|
model_cost_ref["ft:gpt-3.5-turbo"]["input_cost_per_token"] * prompt_tokens
|
|
)
|
|
completion_tokens_cost_usd_dollar = (
|
|
model_cost_ref["ft:gpt-3.5-turbo"]["output_cost_per_token"]
|
|
* completion_tokens
|
|
)
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
elif model in litellm.azure_llms:
|
|
model = litellm.azure_llms[model]
|
|
prompt_tokens_cost_usd_dollar = (
|
|
model_cost_ref[model]["input_cost_per_token"] * prompt_tokens
|
|
)
|
|
completion_tokens_cost_usd_dollar = (
|
|
model_cost_ref[model]["output_cost_per_token"] * completion_tokens
|
|
)
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
else:
|
|
# calculate average input cost, azure/gpt-deployments can potentially go here if users don't specify, gpt-4, gpt-3.5-turbo. LLMs litellm knows
|
|
input_cost_sum = 0
|
|
output_cost_sum = 0
|
|
model_cost_ref = litellm.model_cost
|
|
for model in model_cost_ref:
|
|
input_cost_sum += model_cost_ref[model]["input_cost_per_token"]
|
|
output_cost_sum += model_cost_ref[model]["output_cost_per_token"]
|
|
avg_input_cost = input_cost_sum / len(model_cost_ref.keys())
|
|
avg_output_cost = output_cost_sum / len(model_cost_ref.keys())
|
|
prompt_tokens_cost_usd_dollar = avg_input_cost * prompt_tokens
|
|
completion_tokens_cost_usd_dollar = avg_output_cost * completion_tokens
|
|
return prompt_tokens_cost_usd_dollar, completion_tokens_cost_usd_dollar
|
|
|
|
|
|
def completion_cost(
|
|
completion_response=None,
|
|
model=None,
|
|
prompt="",
|
|
messages: List = [],
|
|
completion="",
|
|
total_time=0.0, # used for replicate
|
|
):
|
|
"""
|
|
Calculate the cost of a given completion call fot GPT-3.5-turbo, llama2, any litellm supported llm.
|
|
|
|
Parameters:
|
|
completion_response (litellm.ModelResponses): [Required] The response received from a LiteLLM completion request.
|
|
|
|
[OPTIONAL PARAMS]
|
|
model (str): Optional. The name of the language model used in the completion calls
|
|
prompt (str): Optional. The input prompt passed to the llm
|
|
completion (str): Optional. The output completion text from the llm
|
|
total_time (float): Optional. (Only used for Replicate LLMs) The total time used for the request in seconds
|
|
|
|
Returns:
|
|
float: The cost in USD dollars for the completion based on the provided parameters.
|
|
|
|
Note:
|
|
- If completion_response is provided, the function extracts token information and the model name from it.
|
|
- If completion_response is not provided, the function calculates token counts based on the model and input text.
|
|
- The cost is calculated based on the model, prompt tokens, and completion tokens.
|
|
- For certain models containing "togethercomputer" in the name, prices are based on the model size.
|
|
- For Replicate models, the cost is calculated based on the total time used for the request.
|
|
|
|
Exceptions:
|
|
- If an error occurs during execution, the function returns 0.0 without blocking the user's execution path.
|
|
"""
|
|
try:
|
|
# Handle Inputs to completion_cost
|
|
prompt_tokens = 0
|
|
completion_tokens = 0
|
|
if completion_response is not None:
|
|
# get input/output tokens from completion_response
|
|
prompt_tokens = completion_response["usage"]["prompt_tokens"]
|
|
completion_tokens = completion_response["usage"]["completion_tokens"]
|
|
model = (
|
|
model or completion_response["model"]
|
|
) # check if user passed an override for model, if it's none check completion_response['model']
|
|
else:
|
|
if len(messages) > 0:
|
|
prompt_tokens = token_counter(model=model, messages=messages)
|
|
elif len(prompt) > 0:
|
|
prompt_tokens = token_counter(model=model, text=prompt)
|
|
completion_tokens = token_counter(model=model, text=completion)
|
|
|
|
# Calculate cost based on prompt_tokens, completion_tokens
|
|
if "togethercomputer" in model or "together_ai" in model:
|
|
# together ai prices based on size of llm
|
|
# get_model_params_and_category takes a model name and returns the category of LLM size it is in model_prices_and_context_window.json
|
|
model = get_model_params_and_category(model)
|
|
# replicate llms are calculate based on time for request running
|
|
# see https://replicate.com/pricing
|
|
elif model in litellm.replicate_models or "replicate" in model:
|
|
return get_replicate_completion_pricing(completion_response, total_time)
|
|
(
|
|
prompt_tokens_cost_usd_dollar,
|
|
completion_tokens_cost_usd_dollar,
|
|
) = cost_per_token(
|
|
model=model,
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
)
|
|
return prompt_tokens_cost_usd_dollar + completion_tokens_cost_usd_dollar
|
|
except Exception as e:
|
|
print_verbose(f"LiteLLM: Excepton when cost calculating {str(e)}")
|
|
return 0.0 # this should not block a users execution path
|
|
|
|
|
|
####### HELPER FUNCTIONS ################
|
|
def register_model(model_cost: Union[str, dict]):
|
|
"""
|
|
Register new / Override existing models (and their pricing) to specific providers.
|
|
Provide EITHER a model cost dictionary or a url to a hosted json blob
|
|
Example usage:
|
|
model_cost_dict = {
|
|
"gpt-4": {
|
|
"max_tokens": 8192,
|
|
"input_cost_per_token": 0.00003,
|
|
"output_cost_per_token": 0.00006,
|
|
"litellm_provider": "openai",
|
|
"mode": "chat"
|
|
},
|
|
}
|
|
"""
|
|
loaded_model_cost = {}
|
|
if isinstance(model_cost, dict):
|
|
loaded_model_cost = model_cost
|
|
elif isinstance(model_cost, str):
|
|
loaded_model_cost = litellm.get_model_cost_map(url=model_cost)
|
|
|
|
for key, value in loaded_model_cost.items():
|
|
## override / add new keys to the existing model cost dictionary
|
|
if key in litellm.model_cost:
|
|
for k, v in loaded_model_cost[key].items():
|
|
litellm.model_cost[key][k] = v
|
|
# add new model names to provider lists
|
|
if value.get("litellm_provider") == "openai":
|
|
if key not in litellm.open_ai_chat_completion_models:
|
|
litellm.open_ai_chat_completion_models.append(key)
|
|
elif value.get("litellm_provider") == "text-completion-openai":
|
|
if key not in litellm.open_ai_text_completion_models:
|
|
litellm.open_ai_text_completion_models.append(key)
|
|
elif value.get("litellm_provider") == "cohere":
|
|
if key not in litellm.cohere_models:
|
|
litellm.cohere_models.append(key)
|
|
elif value.get("litellm_provider") == "anthropic":
|
|
if key not in litellm.anthropic_models:
|
|
litellm.anthropic_models.append(key)
|
|
elif value.get("litellm_provider") == "openrouter":
|
|
split_string = key.split("/", 1)
|
|
if key not in litellm.openrouter_models:
|
|
litellm.openrouter_models.append(split_string[1])
|
|
elif value.get("litellm_provider") == "vertex_ai-text-models":
|
|
if key not in litellm.vertex_text_models:
|
|
litellm.vertex_text_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-code-text-models":
|
|
if key not in litellm.vertex_code_text_models:
|
|
litellm.vertex_code_text_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-chat-models":
|
|
if key not in litellm.vertex_chat_models:
|
|
litellm.vertex_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
|
|
if key not in litellm.vertex_code_chat_models:
|
|
litellm.vertex_code_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "ai21":
|
|
if key not in litellm.ai21_models:
|
|
litellm.ai21_models.append(key)
|
|
elif value.get("litellm_provider") == "nlp_cloud":
|
|
if key not in litellm.nlp_cloud_models:
|
|
litellm.nlp_cloud_models.append(key)
|
|
elif value.get("litellm_provider") == "aleph_alpha":
|
|
if key not in litellm.aleph_alpha_models:
|
|
litellm.aleph_alpha_models.append(key)
|
|
elif value.get("litellm_provider") == "bedrock":
|
|
if key not in litellm.bedrock_models:
|
|
litellm.bedrock_models.append(key)
|
|
return model_cost
|
|
|
|
|
|
def get_litellm_params(
|
|
api_key=None,
|
|
force_timeout=600,
|
|
azure=False,
|
|
logger_fn=None,
|
|
verbose=False,
|
|
hugging_face=False,
|
|
replicate=False,
|
|
together_ai=False,
|
|
custom_llm_provider=None,
|
|
api_base=None,
|
|
litellm_call_id=None,
|
|
model_alias_map=None,
|
|
completion_call_id=None,
|
|
metadata=None,
|
|
model_info=None,
|
|
proxy_server_request=None,
|
|
acompletion=None,
|
|
preset_cache_key=None,
|
|
):
|
|
litellm_params = {
|
|
"acompletion": acompletion,
|
|
"api_key": api_key,
|
|
"force_timeout": force_timeout,
|
|
"logger_fn": logger_fn,
|
|
"verbose": verbose,
|
|
"custom_llm_provider": custom_llm_provider,
|
|
"api_base": api_base,
|
|
"litellm_call_id": litellm_call_id,
|
|
"model_alias_map": model_alias_map,
|
|
"completion_call_id": completion_call_id,
|
|
"metadata": metadata,
|
|
"model_info": model_info,
|
|
"proxy_server_request": proxy_server_request,
|
|
"preset_cache_key": preset_cache_key,
|
|
"stream_response": {}, # litellm_call_id: ModelResponse Dict
|
|
}
|
|
|
|
return litellm_params
|
|
|
|
|
|
def get_optional_params_image_gen(
|
|
n: Optional[int] = None,
|
|
quality: Optional[str] = None,
|
|
response_format: Optional[str] = None,
|
|
size: Optional[str] = None,
|
|
style: Optional[str] = None,
|
|
user: Optional[str] = None,
|
|
custom_llm_provider: Optional[str] = None,
|
|
**kwargs,
|
|
):
|
|
# retrieve all parameters passed to the function
|
|
passed_params = locals()
|
|
custom_llm_provider = passed_params.pop("custom_llm_provider")
|
|
special_params = passed_params.pop("kwargs")
|
|
for k, v in special_params.items():
|
|
passed_params[k] = v
|
|
|
|
default_params = {
|
|
"n": None,
|
|
"quality": None,
|
|
"response_format": None,
|
|
"size": None,
|
|
"style": None,
|
|
"user": None,
|
|
}
|
|
|
|
non_default_params = {
|
|
k: v
|
|
for k, v in passed_params.items()
|
|
if (k in default_params and v != default_params[k])
|
|
}
|
|
## raise exception if non-default value passed for non-openai/azure embedding calls
|
|
if custom_llm_provider != "openai" and custom_llm_provider != "azure":
|
|
if len(non_default_params.keys()) > 0:
|
|
if litellm.drop_params is True: # drop the unsupported non-default values
|
|
keys = list(non_default_params.keys())
|
|
for k in keys:
|
|
non_default_params.pop(k, None)
|
|
return non_default_params
|
|
raise UnsupportedParamsError(
|
|
status_code=500,
|
|
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
|
|
)
|
|
|
|
final_params = {**non_default_params, **kwargs}
|
|
return final_params
|
|
|
|
|
|
def get_optional_params_embeddings(
|
|
# 2 optional params
|
|
user=None,
|
|
encoding_format=None,
|
|
custom_llm_provider="",
|
|
**kwargs,
|
|
):
|
|
# retrieve all parameters passed to the function
|
|
passed_params = locals()
|
|
custom_llm_provider = passed_params.pop("custom_llm_provider", None)
|
|
special_params = passed_params.pop("kwargs")
|
|
for k, v in special_params.items():
|
|
passed_params[k] = v
|
|
|
|
default_params = {"user": None, "encoding_format": None}
|
|
|
|
non_default_params = {
|
|
k: v
|
|
for k, v in passed_params.items()
|
|
if (k in default_params and v != default_params[k])
|
|
}
|
|
## raise exception if non-default value passed for non-openai/azure embedding calls
|
|
if (
|
|
custom_llm_provider != "openai"
|
|
and custom_llm_provider != "azure"
|
|
and custom_llm_provider not in litellm.openai_compatible_providers
|
|
):
|
|
if len(non_default_params.keys()) > 0:
|
|
if litellm.drop_params is True: # drop the unsupported non-default values
|
|
keys = list(non_default_params.keys())
|
|
for k in keys:
|
|
non_default_params.pop(k, None)
|
|
return non_default_params
|
|
raise UnsupportedParamsError(
|
|
status_code=500,
|
|
message=f"Setting user/encoding format is not supported by {custom_llm_provider}. To drop it from the call, set `litellm.drop_params = True`.",
|
|
)
|
|
|
|
final_params = {**non_default_params, **kwargs}
|
|
return final_params
|
|
|
|
|
|
def get_optional_params(
|
|
# use the openai defaults
|
|
# https://platform.openai.com/docs/api-reference/chat/create
|
|
functions=None,
|
|
function_call=None,
|
|
temperature=None,
|
|
top_p=None,
|
|
n=None,
|
|
stream=False,
|
|
stop=None,
|
|
max_tokens=None,
|
|
presence_penalty=None,
|
|
frequency_penalty=None,
|
|
logit_bias=None,
|
|
user=None,
|
|
model=None,
|
|
custom_llm_provider="",
|
|
response_format=None,
|
|
seed=None,
|
|
tools=None,
|
|
tool_choice=None,
|
|
max_retries=None,
|
|
logprobs=None,
|
|
top_logprobs=None,
|
|
**kwargs,
|
|
):
|
|
# retrieve all parameters passed to the function
|
|
passed_params = locals()
|
|
special_params = passed_params.pop("kwargs")
|
|
for k, v in special_params.items():
|
|
passed_params[k] = v
|
|
default_params = {
|
|
"functions": None,
|
|
"function_call": None,
|
|
"temperature": None,
|
|
"top_p": None,
|
|
"n": None,
|
|
"stream": None,
|
|
"stop": None,
|
|
"max_tokens": None,
|
|
"presence_penalty": None,
|
|
"frequency_penalty": None,
|
|
"logit_bias": None,
|
|
"user": None,
|
|
"model": None,
|
|
"custom_llm_provider": "",
|
|
"response_format": None,
|
|
"seed": None,
|
|
"tools": None,
|
|
"tool_choice": None,
|
|
"max_retries": None,
|
|
"logprobs": None,
|
|
"top_logprobs": None,
|
|
}
|
|
# filter out those parameters that were passed with non-default values
|
|
non_default_params = {
|
|
k: v
|
|
for k, v in passed_params.items()
|
|
if (
|
|
k != "model"
|
|
and k != "custom_llm_provider"
|
|
and k in default_params
|
|
and v != default_params[k]
|
|
)
|
|
}
|
|
optional_params = {}
|
|
## raise exception if function calling passed in for a provider that doesn't support it
|
|
if (
|
|
"functions" in non_default_params
|
|
or "function_call" in non_default_params
|
|
or "tools" in non_default_params
|
|
):
|
|
if (
|
|
custom_llm_provider != "openai"
|
|
and custom_llm_provider != "text-completion-openai"
|
|
and custom_llm_provider != "azure"
|
|
and custom_llm_provider != "vertex_ai"
|
|
):
|
|
if custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat":
|
|
# ollama actually supports json output
|
|
optional_params["format"] = "json"
|
|
litellm.add_function_to_prompt = (
|
|
True # so that main.py adds the function call to the prompt
|
|
)
|
|
if "tools" in non_default_params:
|
|
optional_params[
|
|
"functions_unsupported_model"
|
|
] = non_default_params.pop("tools")
|
|
non_default_params.pop(
|
|
"tool_choice", None
|
|
) # causes ollama requests to hang
|
|
elif "functions" in non_default_params:
|
|
optional_params[
|
|
"functions_unsupported_model"
|
|
] = non_default_params.pop("functions")
|
|
elif (
|
|
custom_llm_provider == "anyscale"
|
|
and model == "mistralai/Mistral-7B-Instruct-v0.1"
|
|
): # anyscale just supports function calling with mistral
|
|
pass
|
|
elif (
|
|
litellm.add_function_to_prompt
|
|
): # if user opts to add it to prompt instead
|
|
optional_params["functions_unsupported_model"] = non_default_params.pop(
|
|
"tools", non_default_params.pop("functions")
|
|
)
|
|
else:
|
|
raise UnsupportedParamsError(
|
|
status_code=500,
|
|
message=f"Function calling is not supported by {custom_llm_provider}. To add it to the prompt, set `litellm.add_function_to_prompt = True`.",
|
|
)
|
|
|
|
def _check_valid_arg(supported_params):
|
|
print_verbose(
|
|
f"\nLiteLLM completion() model= {model}; provider = {custom_llm_provider}"
|
|
)
|
|
print_verbose(f"\nLiteLLM: Params passed to completion() {passed_params}")
|
|
print_verbose(
|
|
f"\nLiteLLM: Non-Default params passed to completion() {non_default_params}"
|
|
)
|
|
unsupported_params = {}
|
|
for k in non_default_params.keys():
|
|
if k not in supported_params:
|
|
if k == "n" and n == 1: # langchain sends n=1 as a default value
|
|
continue # skip this param
|
|
if (
|
|
k == "max_retries"
|
|
): # TODO: This is a patch. We support max retries for OpenAI, Azure. For non OpenAI LLMs we need to add support for max retries
|
|
continue # skip this param
|
|
# Always keeps this in elif code blocks
|
|
else:
|
|
unsupported_params[k] = non_default_params[k]
|
|
if unsupported_params and not litellm.drop_params:
|
|
raise UnsupportedParamsError(
|
|
status_code=500,
|
|
message=f"{custom_llm_provider} does not support parameters: {unsupported_params}. To drop these, set `litellm.drop_params=True`.",
|
|
)
|
|
|
|
def _map_and_modify_arg(supported_params: dict, provider: str, model: str):
|
|
"""
|
|
filter params to fit the required provider format, drop those that don't fit if user sets `litellm.drop_params = True`.
|
|
"""
|
|
filtered_stop = None
|
|
if "stop" in supported_params and litellm.drop_params:
|
|
if provider == "bedrock" and "amazon" in model:
|
|
filtered_stop = []
|
|
if isinstance(stop, list):
|
|
for s in stop:
|
|
if re.match(r"^(\|+|User:)$", s):
|
|
filtered_stop.append(s)
|
|
if filtered_stop is not None:
|
|
supported_params["stop"] = filtered_stop
|
|
|
|
return supported_params
|
|
|
|
## raise exception if provider doesn't support passed in param
|
|
if custom_llm_provider == "anthropic":
|
|
## check if unsupported param passed in
|
|
supported_params = ["stream", "stop", "temperature", "top_p", "max_tokens"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# handle anthropic params
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if stop is not None:
|
|
if type(stop) == str:
|
|
stop = [stop] # openai can accept str/list for stop
|
|
optional_params["stop_sequences"] = stop
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens_to_sample"] = max_tokens
|
|
elif custom_llm_provider == "cohere":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"logit_bias",
|
|
"top_p",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"stop",
|
|
"n",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# handle cohere params
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if n is not None:
|
|
optional_params["num_generations"] = n
|
|
if logit_bias is not None:
|
|
optional_params["logit_bias"] = logit_bias
|
|
if top_p is not None:
|
|
optional_params["p"] = top_p
|
|
if frequency_penalty is not None:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if presence_penalty is not None:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "maritalk":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"top_p",
|
|
"presence_penalty",
|
|
"stop",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# handle cohere params
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if logit_bias is not None:
|
|
optional_params["logit_bias"] = logit_bias
|
|
if top_p is not None:
|
|
optional_params["p"] = top_p
|
|
if presence_penalty is not None:
|
|
optional_params["repetition_penalty"] = presence_penalty
|
|
if stop is not None:
|
|
optional_params["stopping_tokens"] = stop
|
|
elif custom_llm_provider == "replicate":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"top_p",
|
|
"stop",
|
|
"seed",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
return optional_params
|
|
if max_tokens is not None:
|
|
if "vicuna" in model or "flan" in model:
|
|
optional_params["max_length"] = max_tokens
|
|
elif "meta/codellama-13b" in model:
|
|
optional_params["max_tokens"] = max_tokens
|
|
else:
|
|
optional_params["max_new_tokens"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "huggingface":
|
|
## check if unsupported param passed in
|
|
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
|
|
if temperature is not None:
|
|
if temperature == 0.0 or temperature == 0:
|
|
# hugging face exception raised when temp==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
|
temperature = 0.01
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if n is not None:
|
|
optional_params["best_of"] = n
|
|
optional_params[
|
|
"do_sample"
|
|
] = True # Need to sample if you want best of for hf inference endpoints
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
if stop is not None:
|
|
optional_params["stop"] = stop
|
|
if max_tokens is not None:
|
|
# HF TGI raises the following exception when max_new_tokens==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
|
if max_tokens == 0:
|
|
max_tokens = 1
|
|
optional_params["max_new_tokens"] = max_tokens
|
|
if n is not None:
|
|
optional_params["best_of"] = n
|
|
if presence_penalty is not None:
|
|
optional_params["repetition_penalty"] = presence_penalty
|
|
if "echo" in passed_params:
|
|
# https://huggingface.co/docs/huggingface_hub/main/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation.decoder_input_details
|
|
# Return the decoder input token logprobs and ids. You must set details=True as well for it to be taken into account. Defaults to False
|
|
optional_params["decoder_input_details"] = special_params["echo"]
|
|
passed_params.pop(
|
|
"echo", None
|
|
) # since we handle translating echo, we should not send it to TGI request
|
|
elif custom_llm_provider == "together_ai":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"top_p",
|
|
"stop",
|
|
"frequency_penalty",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if stream:
|
|
optional_params["stream_tokens"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if frequency_penalty is not None:
|
|
optional_params[
|
|
"repetition_penalty"
|
|
] = frequency_penalty # https://docs.together.ai/reference/inference
|
|
if stop is not None:
|
|
optional_params["stop"] = stop
|
|
elif custom_llm_provider == "ai21":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"stream",
|
|
"n",
|
|
"temperature",
|
|
"max_tokens",
|
|
"top_p",
|
|
"stop",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if n is not None:
|
|
optional_params["numResults"] = n
|
|
if max_tokens is not None:
|
|
optional_params["maxTokens"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["topP"] = top_p
|
|
if stop is not None:
|
|
optional_params["stopSequences"] = stop
|
|
if frequency_penalty is not None:
|
|
optional_params["frequencyPenalty"] = {"scale": frequency_penalty}
|
|
if presence_penalty is not None:
|
|
optional_params["presencePenalty"] = {"scale": presence_penalty}
|
|
elif (
|
|
custom_llm_provider == "palm"
|
|
): # https://developers.generativeai.google/tutorials/curl_quickstart
|
|
## check if unsupported param passed in
|
|
supported_params = ["temperature", "top_p", "stream", "n", "stop", "max_tokens"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if n is not None:
|
|
optional_params["candidate_count"] = n
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
if max_tokens is not None:
|
|
optional_params["max_output_tokens"] = max_tokens
|
|
elif custom_llm_provider == "vertex_ai":
|
|
## check if unsupported param passed in
|
|
supported_params = [
|
|
"temperature",
|
|
"top_p",
|
|
"max_tokens",
|
|
"stream",
|
|
"tools",
|
|
"tool_choice",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if max_tokens is not None:
|
|
optional_params["max_output_tokens"] = max_tokens
|
|
if tools is not None and isinstance(tools, list):
|
|
from vertexai.preview import generative_models
|
|
|
|
gtools = []
|
|
for tool in tools:
|
|
gtool = generative_models.FunctionDeclaration(
|
|
name=tool["function"]["name"],
|
|
description=tool["function"].get("description", ""),
|
|
parameters=tool["function"].get("parameters", {}),
|
|
)
|
|
gtool_func_declaration = generative_models.Tool(
|
|
function_declarations=[gtool]
|
|
)
|
|
gtools.append(gtool_func_declaration)
|
|
optional_params["tools"] = gtools
|
|
elif custom_llm_provider == "sagemaker":
|
|
## check if unsupported param passed in
|
|
supported_params = ["stream", "temperature", "max_tokens", "top_p", "stop", "n"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# temperature, top_p, n, stream, stop, max_tokens, n, presence_penalty default to None
|
|
if temperature is not None:
|
|
if temperature == 0.0 or temperature == 0:
|
|
# hugging face exception raised when temp==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `temperature` must be strictly positive
|
|
temperature = 0.01
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if n is not None:
|
|
optional_params["best_of"] = n
|
|
optional_params[
|
|
"do_sample"
|
|
] = True # Need to sample if you want best of for hf inference endpoints
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
if stop is not None:
|
|
optional_params["stop"] = stop
|
|
if max_tokens is not None:
|
|
# HF TGI raises the following exception when max_new_tokens==0
|
|
# Failed: Error occurred: HuggingfaceException - Input validation error: `max_new_tokens` must be strictly positive
|
|
if max_tokens == 0:
|
|
max_tokens = 1
|
|
optional_params["max_new_tokens"] = max_tokens
|
|
elif custom_llm_provider == "bedrock":
|
|
if "ai21" in model:
|
|
supported_params = ["max_tokens", "temperature", "top_p", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# params "maxTokens":200,"temperature":0,"topP":250,"stop_sequences":[],
|
|
# https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
|
|
if max_tokens is not None:
|
|
optional_params["maxTokens"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["topP"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
elif "anthropic" in model:
|
|
supported_params = ["max_tokens", "temperature", "stop", "top_p", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# anthropic params on bedrock
|
|
# \"max_tokens_to_sample\":300,\"temperature\":0.5,\"top_p\":1,\"stop_sequences\":[\"\\\\n\\\\nHuman:\"]}"
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens_to_sample"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
elif "amazon" in model: # amazon titan llms
|
|
supported_params = ["max_tokens", "temperature", "stop", "top_p", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
|
|
if max_tokens is not None:
|
|
optional_params["maxTokenCount"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if stop is not None:
|
|
filtered_stop = _map_and_modify_arg(
|
|
{"stop": stop}, provider="bedrock", model=model
|
|
)
|
|
optional_params["stopSequences"] = filtered_stop["stop"]
|
|
if top_p is not None:
|
|
optional_params["topP"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
elif "meta" in model: # amazon / meta llms
|
|
supported_params = ["max_tokens", "temperature", "top_p", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# see https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-large
|
|
if max_tokens is not None:
|
|
optional_params["max_gen_len"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
elif "cohere" in model: # cohere models on bedrock
|
|
supported_params = ["stream", "temperature", "max_tokens"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# handle cohere params
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
elif custom_llm_provider == "aleph_alpha":
|
|
supported_params = [
|
|
"max_tokens",
|
|
"stream",
|
|
"top_p",
|
|
"temperature",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"n",
|
|
"stop",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
if max_tokens is not None:
|
|
optional_params["maximum_tokens"] = max_tokens
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if presence_penalty is not None:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty is not None:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if n is not None:
|
|
optional_params["n"] = n
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "cloudflare":
|
|
# https://developers.cloudflare.com/workers-ai/models/text-generation/#input
|
|
supported_params = ["max_tokens", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
elif custom_llm_provider == "ollama":
|
|
supported_params = [
|
|
"max_tokens",
|
|
"stream",
|
|
"top_p",
|
|
"temperature",
|
|
"frequency_penalty",
|
|
"stop",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if max_tokens is not None:
|
|
optional_params["num_predict"] = max_tokens
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if frequency_penalty is not None:
|
|
optional_params["repeat_penalty"] = frequency_penalty
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "ollama_chat":
|
|
supported_params = [
|
|
"max_tokens",
|
|
"stream",
|
|
"top_p",
|
|
"temperature",
|
|
"frequency_penalty",
|
|
"stop",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if max_tokens is not None:
|
|
optional_params["num_predict"] = max_tokens
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if frequency_penalty is not None:
|
|
optional_params["repeat_penalty"] = frequency_penalty
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "nlp_cloud":
|
|
supported_params = [
|
|
"max_tokens",
|
|
"stream",
|
|
"temperature",
|
|
"top_p",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"n",
|
|
"stop",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if max_tokens is not None:
|
|
optional_params["max_length"] = max_tokens
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if presence_penalty is not None:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty is not None:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if n is not None:
|
|
optional_params["num_return_sequences"] = n
|
|
if stop is not None:
|
|
optional_params["stop_sequences"] = stop
|
|
elif custom_llm_provider == "petals":
|
|
supported_params = ["max_tokens", "temperature", "top_p", "stream"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
# max_new_tokens=1,temperature=0.9, top_p=0.6
|
|
if max_tokens is not None:
|
|
optional_params["max_new_tokens"] = max_tokens
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
elif custom_llm_provider == "deepinfra":
|
|
supported_params = [
|
|
"temperature",
|
|
"top_p",
|
|
"n",
|
|
"stream",
|
|
"stop",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"user",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
if temperature is not None:
|
|
if (
|
|
temperature == 0 and model == "mistralai/Mistral-7B-Instruct-v0.1"
|
|
): # this model does no support temperature == 0
|
|
temperature = 0.0001 # close to 0
|
|
optional_params["temperature"] = temperature
|
|
if top_p:
|
|
optional_params["top_p"] = top_p
|
|
if n:
|
|
optional_params["n"] = n
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if stop:
|
|
optional_params["stop"] = stop
|
|
if max_tokens:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if presence_penalty:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if logit_bias:
|
|
optional_params["logit_bias"] = logit_bias
|
|
if user:
|
|
optional_params["user"] = user
|
|
elif custom_llm_provider == "perplexity":
|
|
supported_params = [
|
|
"temperature",
|
|
"top_p",
|
|
"stream",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
if temperature is not None:
|
|
if (
|
|
temperature == 0 and model == "mistral-7b-instruct"
|
|
): # this model does no support temperature == 0
|
|
temperature = 0.0001 # close to 0
|
|
optional_params["temperature"] = temperature
|
|
if top_p:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if max_tokens:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if presence_penalty:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
elif custom_llm_provider == "anyscale":
|
|
supported_params = [
|
|
"temperature",
|
|
"top_p",
|
|
"stream",
|
|
"max_tokens",
|
|
"stop",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
]
|
|
if model in [
|
|
"mistralai/Mistral-7B-Instruct-v0.1",
|
|
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
]:
|
|
supported_params += [
|
|
"functions",
|
|
"function_call",
|
|
"tools",
|
|
"tool_choice",
|
|
"response_format",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
optional_params = non_default_params
|
|
if temperature is not None:
|
|
if temperature == 0 and model in [
|
|
"mistralai/Mistral-7B-Instruct-v0.1",
|
|
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
]: # this model does no support temperature == 0
|
|
temperature = 0.0001 # close to 0
|
|
optional_params["temperature"] = temperature
|
|
if top_p:
|
|
optional_params["top_p"] = top_p
|
|
if stream:
|
|
optional_params["stream"] = stream
|
|
if max_tokens:
|
|
optional_params["max_tokens"] = max_tokens
|
|
elif custom_llm_provider == "mistral":
|
|
supported_params = ["temperature", "top_p", "stream", "max_tokens"]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
optional_params = non_default_params
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
|
|
# check safe_mode, random_seed: https://docs.mistral.ai/api/#operation/createChatCompletion
|
|
safe_mode = passed_params.pop("safe_mode", None)
|
|
random_seed = passed_params.pop("random_seed", None)
|
|
extra_body = {}
|
|
if safe_mode is not None:
|
|
extra_body["safe_mode"] = safe_mode
|
|
if random_seed is not None:
|
|
extra_body["random_seed"] = random_seed
|
|
optional_params[
|
|
"extra_body"
|
|
] = extra_body # openai client supports `extra_body` param
|
|
elif custom_llm_provider == "openrouter":
|
|
supported_params = [
|
|
"functions",
|
|
"function_call",
|
|
"temperature",
|
|
"top_p",
|
|
"n",
|
|
"stream",
|
|
"stop",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"user",
|
|
"response_format",
|
|
"seed",
|
|
"tools",
|
|
"tool_choice",
|
|
"max_retries",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
|
|
if functions is not None:
|
|
optional_params["functions"] = functions
|
|
if function_call is not None:
|
|
optional_params["function_call"] = function_call
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if n is not None:
|
|
optional_params["n"] = n
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
if stop is not None:
|
|
optional_params["stop"] = stop
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if presence_penalty is not None:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty is not None:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if logit_bias is not None:
|
|
optional_params["logit_bias"] = logit_bias
|
|
if user is not None:
|
|
optional_params["user"] = user
|
|
if response_format is not None:
|
|
optional_params["response_format"] = response_format
|
|
if seed is not None:
|
|
optional_params["seed"] = seed
|
|
if tools is not None:
|
|
optional_params["tools"] = tools
|
|
if tool_choice is not None:
|
|
optional_params["tool_choice"] = tool_choice
|
|
if max_retries is not None:
|
|
optional_params["max_retries"] = max_retries
|
|
|
|
# OpenRouter-only parameters
|
|
extra_body = {}
|
|
transforms = passed_params.pop("transforms", None)
|
|
models = passed_params.pop("models", None)
|
|
route = passed_params.pop("route", None)
|
|
if transforms is not None:
|
|
extra_body["transforms"] = transforms
|
|
if models is not None:
|
|
extra_body["models"] = models
|
|
if route is not None:
|
|
extra_body["route"] = route
|
|
optional_params[
|
|
"extra_body"
|
|
] = extra_body # openai client supports `extra_body` param
|
|
else: # assume passing in params for openai/azure openai
|
|
supported_params = [
|
|
"functions",
|
|
"function_call",
|
|
"temperature",
|
|
"top_p",
|
|
"n",
|
|
"stream",
|
|
"stop",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"user",
|
|
"response_format",
|
|
"seed",
|
|
"tools",
|
|
"tool_choice",
|
|
"max_retries",
|
|
"logprobs",
|
|
"top_logprobs",
|
|
]
|
|
_check_valid_arg(supported_params=supported_params)
|
|
if functions is not None:
|
|
optional_params["functions"] = functions
|
|
if function_call is not None:
|
|
optional_params["function_call"] = function_call
|
|
if temperature is not None:
|
|
optional_params["temperature"] = temperature
|
|
if top_p is not None:
|
|
optional_params["top_p"] = top_p
|
|
if n is not None:
|
|
optional_params["n"] = n
|
|
if stream is not None:
|
|
optional_params["stream"] = stream
|
|
if stop is not None:
|
|
optional_params["stop"] = stop
|
|
if max_tokens is not None:
|
|
optional_params["max_tokens"] = max_tokens
|
|
if presence_penalty is not None:
|
|
optional_params["presence_penalty"] = presence_penalty
|
|
if frequency_penalty is not None:
|
|
optional_params["frequency_penalty"] = frequency_penalty
|
|
if logit_bias is not None:
|
|
optional_params["logit_bias"] = logit_bias
|
|
if user is not None:
|
|
optional_params["user"] = user
|
|
if response_format is not None:
|
|
optional_params["response_format"] = response_format
|
|
if seed is not None:
|
|
optional_params["seed"] = seed
|
|
if tools is not None:
|
|
optional_params["tools"] = tools
|
|
if tool_choice is not None:
|
|
optional_params["tool_choice"] = tool_choice
|
|
if max_retries is not None:
|
|
optional_params["max_retries"] = max_retries
|
|
if logprobs is not None:
|
|
optional_params["logprobs"] = logprobs
|
|
if top_logprobs is not None:
|
|
optional_params["top_logprobs"] = top_logprobs
|
|
# if user passed in non-default kwargs for specific providers/models, pass them along
|
|
for k in passed_params.keys():
|
|
if k not in default_params.keys():
|
|
optional_params[k] = passed_params[k]
|
|
return optional_params
|
|
|
|
|
|
def get_llm_provider(
|
|
model: str,
|
|
custom_llm_provider: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
):
|
|
try:
|
|
dynamic_api_key = None
|
|
# check if llm provider provided
|
|
|
|
if custom_llm_provider:
|
|
return model, custom_llm_provider, dynamic_api_key, api_base
|
|
|
|
if api_key and api_key.startswith("os.environ/"):
|
|
dynamic_api_key = get_secret(api_key)
|
|
# check if llm provider part of model name
|
|
if (
|
|
model.split("/", 1)[0] in litellm.provider_list
|
|
and model.split("/", 1)[0] not in litellm.model_list
|
|
):
|
|
custom_llm_provider = model.split("/", 1)[0]
|
|
model = model.split("/", 1)[1]
|
|
if custom_llm_provider == "perplexity":
|
|
# perplexity is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.perplexity.ai
|
|
api_base = "https://api.perplexity.ai"
|
|
dynamic_api_key = get_secret("PERPLEXITYAI_API_KEY")
|
|
elif custom_llm_provider == "anyscale":
|
|
# anyscale is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
|
|
api_base = "https://api.endpoints.anyscale.com/v1"
|
|
dynamic_api_key = get_secret("ANYSCALE_API_KEY")
|
|
elif custom_llm_provider == "deepinfra":
|
|
# deepinfra is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.endpoints.anyscale.com/v1
|
|
api_base = "https://api.deepinfra.com/v1/openai"
|
|
dynamic_api_key = get_secret("DEEPINFRA_API_KEY")
|
|
elif custom_llm_provider == "mistral":
|
|
# mistral is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.mistral.ai
|
|
api_base = "https://api.mistral.ai/v1"
|
|
dynamic_api_key = get_secret("MISTRAL_API_KEY")
|
|
elif custom_llm_provider == "voyage":
|
|
# voyage is openai compatible, we just need to set this to custom_openai and have the api_base be https://api.voyageai.com/v1
|
|
api_base = "https://api.voyageai.com/v1"
|
|
dynamic_api_key = get_secret("VOYAGE_API_KEY")
|
|
return model, custom_llm_provider, dynamic_api_key, api_base
|
|
|
|
# check if api base is a known openai compatible endpoint
|
|
if api_base:
|
|
for endpoint in litellm.openai_compatible_endpoints:
|
|
if endpoint in api_base:
|
|
if endpoint == "api.perplexity.ai":
|
|
custom_llm_provider = "perplexity"
|
|
dynamic_api_key = get_secret("PERPLEXITYAI_API_KEY")
|
|
elif endpoint == "api.endpoints.anyscale.com/v1":
|
|
custom_llm_provider = "anyscale"
|
|
dynamic_api_key = get_secret("ANYSCALE_API_KEY")
|
|
elif endpoint == "api.deepinfra.com/v1/openai":
|
|
custom_llm_provider = "deepinfra"
|
|
dynamic_api_key = get_secret("DEEPINFRA_API_KEY")
|
|
elif endpoint == "api.mistral.ai/v1":
|
|
custom_llm_provider = "mistral"
|
|
dynamic_api_key = get_secret("MISTRAL_API_KEY")
|
|
return model, custom_llm_provider, dynamic_api_key, api_base
|
|
|
|
# check if model in known model provider list -> for huggingface models, raise exception as they don't have a fixed provider (can be togetherai, anyscale, baseten, runpod, et.)
|
|
## openai - chatcompletion + text completion
|
|
if (
|
|
model in litellm.open_ai_chat_completion_models
|
|
or "ft:gpt-3.5-turbo" in model
|
|
or model in litellm.openai_image_generation_models
|
|
):
|
|
custom_llm_provider = "openai"
|
|
elif model in litellm.open_ai_text_completion_models:
|
|
custom_llm_provider = "text-completion-openai"
|
|
## anthropic
|
|
elif model in litellm.anthropic_models:
|
|
custom_llm_provider = "anthropic"
|
|
## cohere
|
|
elif model in litellm.cohere_models or model in litellm.cohere_embedding_models:
|
|
custom_llm_provider = "cohere"
|
|
## replicate
|
|
elif model in litellm.replicate_models or (":" in model and len(model) > 64):
|
|
model_parts = model.split(":")
|
|
if (
|
|
len(model_parts) > 1 and len(model_parts[1]) == 64
|
|
): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3"
|
|
custom_llm_provider = "replicate"
|
|
elif model in litellm.replicate_models:
|
|
custom_llm_provider = "replicate"
|
|
## openrouter
|
|
elif model in litellm.openrouter_models:
|
|
custom_llm_provider = "openrouter"
|
|
## openrouter
|
|
elif model in litellm.maritalk_models:
|
|
custom_llm_provider = "maritalk"
|
|
## vertex - text + chat + language (gemini) models
|
|
elif (
|
|
model in litellm.vertex_chat_models
|
|
or model in litellm.vertex_code_chat_models
|
|
or model in litellm.vertex_text_models
|
|
or model in litellm.vertex_code_text_models
|
|
or model in litellm.vertex_language_models
|
|
):
|
|
custom_llm_provider = "vertex_ai"
|
|
## ai21
|
|
elif model in litellm.ai21_models:
|
|
custom_llm_provider = "ai21"
|
|
## aleph_alpha
|
|
elif model in litellm.aleph_alpha_models:
|
|
custom_llm_provider = "aleph_alpha"
|
|
## baseten
|
|
elif model in litellm.baseten_models:
|
|
custom_llm_provider = "baseten"
|
|
## nlp_cloud
|
|
elif model in litellm.nlp_cloud_models:
|
|
custom_llm_provider = "nlp_cloud"
|
|
## petals
|
|
elif model in litellm.petals_models:
|
|
custom_llm_provider = "petals"
|
|
## bedrock
|
|
elif (
|
|
model in litellm.bedrock_models or model in litellm.bedrock_embedding_models
|
|
):
|
|
custom_llm_provider = "bedrock"
|
|
# openai embeddings
|
|
elif model in litellm.open_ai_embedding_models:
|
|
custom_llm_provider = "openai"
|
|
if custom_llm_provider is None or custom_llm_provider == "":
|
|
if litellm.suppress_debug_info == False:
|
|
print() # noqa
|
|
print( # noqa
|
|
"\033[1;31mProvider List: https://docs.litellm.ai/docs/providers\033[0m" # noqa
|
|
) # noqa
|
|
print() # noqa
|
|
error_str = f"LLM Provider NOT provided. Pass in the LLM provider you are trying to call. You passed model={model}\n Pass model as E.g. For 'Huggingface' inference endpoints pass in `completion(model='huggingface/starcoder',..)` Learn more: https://docs.litellm.ai/docs/providers"
|
|
# maps to openai.NotFoundError, this is raised when openai does not recognize the llm
|
|
raise litellm.exceptions.NotFoundError( # type: ignore
|
|
message=error_str,
|
|
model=model,
|
|
response=httpx.Response(
|
|
status_code=404,
|
|
content=error_str,
|
|
request=httpx.request(method="completion", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
llm_provider="",
|
|
)
|
|
return model, custom_llm_provider, dynamic_api_key, api_base
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
def get_api_key(llm_provider: str, dynamic_api_key: Optional[str]):
|
|
api_key = dynamic_api_key or litellm.api_key
|
|
# openai
|
|
if llm_provider == "openai" or llm_provider == "text-completion-openai":
|
|
api_key = api_key or litellm.openai_key or get_secret("OPENAI_API_KEY")
|
|
# anthropic
|
|
elif llm_provider == "anthropic":
|
|
api_key = api_key or litellm.anthropic_key or get_secret("ANTHROPIC_API_KEY")
|
|
# ai21
|
|
elif llm_provider == "ai21":
|
|
api_key = api_key or litellm.ai21_key or get_secret("AI211_API_KEY")
|
|
# aleph_alpha
|
|
elif llm_provider == "aleph_alpha":
|
|
api_key = (
|
|
api_key or litellm.aleph_alpha_key or get_secret("ALEPH_ALPHA_API_KEY")
|
|
)
|
|
# baseten
|
|
elif llm_provider == "baseten":
|
|
api_key = api_key or litellm.baseten_key or get_secret("BASETEN_API_KEY")
|
|
# cohere
|
|
elif llm_provider == "cohere":
|
|
api_key = api_key or litellm.cohere_key or get_secret("COHERE_API_KEY")
|
|
# huggingface
|
|
elif llm_provider == "huggingface":
|
|
api_key = (
|
|
api_key or litellm.huggingface_key or get_secret("HUGGINGFACE_API_KEY")
|
|
)
|
|
# nlp_cloud
|
|
elif llm_provider == "nlp_cloud":
|
|
api_key = api_key or litellm.nlp_cloud_key or get_secret("NLP_CLOUD_API_KEY")
|
|
# replicate
|
|
elif llm_provider == "replicate":
|
|
api_key = api_key or litellm.replicate_key or get_secret("REPLICATE_API_KEY")
|
|
# together_ai
|
|
elif llm_provider == "together_ai":
|
|
api_key = (
|
|
api_key
|
|
or litellm.togetherai_api_key
|
|
or get_secret("TOGETHERAI_API_KEY")
|
|
or get_secret("TOGETHER_AI_TOKEN")
|
|
)
|
|
return api_key
|
|
|
|
|
|
def get_max_tokens(model: str):
|
|
"""
|
|
Get the maximum number of tokens allowed for a given model.
|
|
|
|
Parameters:
|
|
model (str): The name of the model.
|
|
|
|
Returns:
|
|
int: The maximum number of tokens allowed for the given model.
|
|
|
|
Raises:
|
|
Exception: If the model is not mapped yet.
|
|
|
|
Example:
|
|
>>> get_max_tokens("gpt-4")
|
|
8192
|
|
"""
|
|
|
|
def _get_max_position_embeddings(model_name):
|
|
# Construct the URL for the config.json file
|
|
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
|
|
|
|
try:
|
|
# Make the HTTP request to get the raw JSON file
|
|
response = requests.get(config_url)
|
|
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
|
|
|
|
# Parse the JSON response
|
|
config_json = response.json()
|
|
|
|
# Extract and return the max_position_embeddings
|
|
max_position_embeddings = config_json.get("max_position_embeddings")
|
|
|
|
if max_position_embeddings is not None:
|
|
return max_position_embeddings
|
|
else:
|
|
return None
|
|
except requests.exceptions.RequestException as e:
|
|
return None
|
|
|
|
try:
|
|
if model in litellm.model_cost:
|
|
return litellm.model_cost[model]["max_tokens"]
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
|
|
if custom_llm_provider == "huggingface":
|
|
max_tokens = _get_max_position_embeddings(model_name=model)
|
|
return max_tokens
|
|
else:
|
|
raise Exception()
|
|
except:
|
|
raise Exception(
|
|
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
|
|
)
|
|
|
|
|
|
def get_model_info(model: str):
|
|
"""
|
|
Get a dict for the maximum tokens (context window),
|
|
input_cost_per_token, output_cost_per_token for a given model.
|
|
|
|
Parameters:
|
|
model (str): The name of the model.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the following information:
|
|
- max_tokens (int): The maximum number of tokens allowed for the given model.
|
|
- input_cost_per_token (float): The cost per token for input.
|
|
- output_cost_per_token (float): The cost per token for output.
|
|
- litellm_provider (str): The provider of the model (e.g., "openai").
|
|
- mode (str): The mode of the model (e.g., "chat" or "completion").
|
|
|
|
Raises:
|
|
Exception: If the model is not mapped yet.
|
|
|
|
Example:
|
|
>>> get_model_info("gpt-4")
|
|
{
|
|
"max_tokens": 8192,
|
|
"input_cost_per_token": 0.00003,
|
|
"output_cost_per_token": 0.00006,
|
|
"litellm_provider": "openai",
|
|
"mode": "chat"
|
|
}
|
|
"""
|
|
|
|
def _get_max_position_embeddings(model_name):
|
|
# Construct the URL for the config.json file
|
|
config_url = f"https://huggingface.co/{model_name}/raw/main/config.json"
|
|
|
|
try:
|
|
# Make the HTTP request to get the raw JSON file
|
|
response = requests.get(config_url)
|
|
response.raise_for_status() # Raise an exception for bad responses (4xx or 5xx)
|
|
|
|
# Parse the JSON response
|
|
config_json = response.json()
|
|
|
|
# Extract and return the max_position_embeddings
|
|
max_position_embeddings = config_json.get("max_position_embeddings")
|
|
|
|
if max_position_embeddings is not None:
|
|
return max_position_embeddings
|
|
else:
|
|
return None
|
|
except requests.exceptions.RequestException as e:
|
|
return None
|
|
|
|
try:
|
|
azure_llms = litellm.azure_llms
|
|
if model in azure_llms:
|
|
model = azure_llms[model]
|
|
if model in litellm.model_cost:
|
|
return litellm.model_cost[model]
|
|
model, custom_llm_provider, _, _ = get_llm_provider(model=model)
|
|
if custom_llm_provider == "huggingface":
|
|
max_tokens = _get_max_position_embeddings(model_name=model)
|
|
return {
|
|
"max_tokens": max_tokens,
|
|
"input_cost_per_token": 0,
|
|
"output_cost_per_token": 0,
|
|
"litellm_provider": "huggingface",
|
|
"mode": "chat",
|
|
}
|
|
else:
|
|
raise Exception()
|
|
except:
|
|
raise Exception(
|
|
"This model isn't mapped yet. Add it here - https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json"
|
|
)
|
|
|
|
|
|
def json_schema_type(python_type_name: str):
|
|
"""Converts standard python types to json schema types
|
|
|
|
Parameters
|
|
----------
|
|
python_type_name : str
|
|
__name__ of type
|
|
|
|
Returns
|
|
-------
|
|
str
|
|
a standard JSON schema type, "string" if not recognized.
|
|
"""
|
|
python_to_json_schema_types = {
|
|
str.__name__: "string",
|
|
int.__name__: "integer",
|
|
float.__name__: "number",
|
|
bool.__name__: "boolean",
|
|
list.__name__: "array",
|
|
dict.__name__: "object",
|
|
"NoneType": "null",
|
|
}
|
|
|
|
return python_to_json_schema_types.get(python_type_name, "string")
|
|
|
|
|
|
def function_to_dict(input_function): # noqa: C901
|
|
"""Using type hints and numpy-styled docstring,
|
|
produce a dictionnary usable for OpenAI function calling
|
|
|
|
Parameters
|
|
----------
|
|
input_function : function
|
|
A function with a numpy-style docstring
|
|
|
|
Returns
|
|
-------
|
|
dictionnary
|
|
A dictionnary to add to the list passed to `functions` parameter of `litellm.completion`
|
|
"""
|
|
# Get function name and docstring
|
|
try:
|
|
import inspect
|
|
from numpydoc.docscrape import NumpyDocString
|
|
from ast import literal_eval
|
|
except Exception as e:
|
|
raise e
|
|
|
|
name = input_function.__name__
|
|
docstring = inspect.getdoc(input_function)
|
|
numpydoc = NumpyDocString(docstring)
|
|
description = "\n".join([s.strip() for s in numpydoc["Summary"]])
|
|
|
|
# Get function parameters and their types from annotations and docstring
|
|
parameters = {}
|
|
required_params = []
|
|
param_info = inspect.signature(input_function).parameters
|
|
|
|
for param_name, param in param_info.items():
|
|
if hasattr(param, "annotation"):
|
|
param_type = json_schema_type(param.annotation.__name__)
|
|
else:
|
|
param_type = None
|
|
param_description = None
|
|
param_enum = None
|
|
|
|
# Try to extract param description from docstring using numpydoc
|
|
for param_data in numpydoc["Parameters"]:
|
|
if param_data.name == param_name:
|
|
if hasattr(param_data, "type"):
|
|
# replace type from docstring rather than annotation
|
|
param_type = param_data.type
|
|
if "optional" in param_type:
|
|
param_type = param_type.split(",")[0]
|
|
elif "{" in param_type:
|
|
# may represent a set of acceptable values
|
|
# translating as enum for function calling
|
|
try:
|
|
param_enum = str(list(literal_eval(param_type)))
|
|
param_type = "string"
|
|
except Exception:
|
|
pass
|
|
param_type = json_schema_type(param_type)
|
|
param_description = "\n".join([s.strip() for s in param_data.desc])
|
|
|
|
param_dict = {
|
|
"type": param_type,
|
|
"description": param_description,
|
|
"enum": param_enum,
|
|
}
|
|
|
|
parameters[param_name] = dict(
|
|
[(k, v) for k, v in param_dict.items() if isinstance(v, str)]
|
|
)
|
|
|
|
# Check if the parameter has no default value (i.e., it's required)
|
|
if param.default == param.empty:
|
|
required_params.append(param_name)
|
|
|
|
# Create the dictionary
|
|
result = {
|
|
"name": name,
|
|
"description": description,
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": parameters,
|
|
},
|
|
}
|
|
|
|
# Add "required" key if there are required parameters
|
|
if required_params:
|
|
result["parameters"]["required"] = required_params
|
|
|
|
return result
|
|
|
|
|
|
def load_test_model(
|
|
model: str,
|
|
custom_llm_provider: str = "",
|
|
api_base: str = "",
|
|
prompt: str = "",
|
|
num_calls: int = 0,
|
|
force_timeout: int = 0,
|
|
):
|
|
test_prompt = "Hey, how's it going"
|
|
test_calls = 100
|
|
if prompt:
|
|
test_prompt = prompt
|
|
if num_calls:
|
|
test_calls = num_calls
|
|
messages = [[{"role": "user", "content": test_prompt}] for _ in range(test_calls)]
|
|
start_time = time.time()
|
|
try:
|
|
litellm.batch_completion(
|
|
model=model,
|
|
messages=messages,
|
|
custom_llm_provider=custom_llm_provider,
|
|
api_base=api_base,
|
|
force_timeout=force_timeout,
|
|
)
|
|
end_time = time.time()
|
|
response_time = end_time - start_time
|
|
return {
|
|
"total_response_time": response_time,
|
|
"calls_made": 100,
|
|
"status": "success",
|
|
"exception": None,
|
|
}
|
|
except Exception as e:
|
|
end_time = time.time()
|
|
response_time = end_time - start_time
|
|
return {
|
|
"total_response_time": response_time,
|
|
"calls_made": 100,
|
|
"status": "failed",
|
|
"exception": e,
|
|
}
|
|
|
|
|
|
def validate_environment(model: Optional[str] = None) -> dict:
|
|
"""
|
|
Checks if the environment variables are valid for the given model.
|
|
|
|
Args:
|
|
model (Optional[str]): The name of the model. Defaults to None.
|
|
|
|
Returns:
|
|
dict: A dictionary containing the following keys:
|
|
- keys_in_environment (bool): True if all the required keys are present in the environment, False otherwise.
|
|
- missing_keys (List[str]): A list of missing keys in the environment.
|
|
"""
|
|
keys_in_environment = False
|
|
missing_keys: List[str] = []
|
|
|
|
if model is None:
|
|
return {
|
|
"keys_in_environment": keys_in_environment,
|
|
"missing_keys": missing_keys,
|
|
}
|
|
## EXTRACT LLM PROVIDER - if model name provided
|
|
try:
|
|
custom_llm_provider = get_llm_provider(model=model)
|
|
except:
|
|
custom_llm_provider = None
|
|
# # check if llm provider part of model name
|
|
# if model.split("/",1)[0] in litellm.provider_list:
|
|
# custom_llm_provider = model.split("/", 1)[0]
|
|
# model = model.split("/", 1)[1]
|
|
# custom_llm_provider_passed_in = True
|
|
|
|
if custom_llm_provider:
|
|
if custom_llm_provider == "openai":
|
|
if "OPENAI_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("OPENAI_API_KEY")
|
|
elif custom_llm_provider == "azure":
|
|
if (
|
|
"AZURE_API_BASE" in os.environ
|
|
and "AZURE_API_VERSION" in os.environ
|
|
and "AZURE_API_KEY" in os.environ
|
|
):
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.extend(
|
|
["AZURE_API_BASE", "AZURE_API_VERSION", "AZURE_API_KEY"]
|
|
)
|
|
elif custom_llm_provider == "anthropic":
|
|
if "ANTHROPIC_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("ANTHROPIC_API_KEY")
|
|
elif custom_llm_provider == "cohere":
|
|
if "COHERE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("COHERE_API_KEY")
|
|
elif custom_llm_provider == "replicate":
|
|
if "REPLICATE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("REPLICATE_API_KEY")
|
|
elif custom_llm_provider == "openrouter":
|
|
if "OPENROUTER_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("OPENROUTER_API_KEY")
|
|
elif custom_llm_provider == "vertex_ai":
|
|
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"])
|
|
elif custom_llm_provider == "huggingface":
|
|
if "HUGGINGFACE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("HUGGINGFACE_API_KEY")
|
|
elif custom_llm_provider == "ai21":
|
|
if "AI21_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("AI21_API_KEY")
|
|
elif custom_llm_provider == "together_ai":
|
|
if "TOGETHERAI_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("TOGETHERAI_API_KEY")
|
|
elif custom_llm_provider == "aleph_alpha":
|
|
if "ALEPH_ALPHA_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("ALEPH_ALPHA_API_KEY")
|
|
elif custom_llm_provider == "baseten":
|
|
if "BASETEN_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("BASETEN_API_KEY")
|
|
elif custom_llm_provider == "nlp_cloud":
|
|
if "NLP_CLOUD_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("NLP_CLOUD_API_KEY")
|
|
elif custom_llm_provider == "bedrock":
|
|
if (
|
|
"AWS_ACCESS_KEY_ID" in os.environ
|
|
and "AWS_SECRET_ACCESS_KEY" in os.environ
|
|
):
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("AWS_ACCESS_KEY_ID")
|
|
missing_keys.append("AWS_SECRET_ACCESS_KEY")
|
|
else:
|
|
## openai - chatcompletion + text completion
|
|
if (
|
|
model in litellm.open_ai_chat_completion_models
|
|
or litellm.open_ai_text_completion_models
|
|
):
|
|
if "OPENAI_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("OPENAI_API_KEY")
|
|
## anthropic
|
|
elif model in litellm.anthropic_models:
|
|
if "ANTHROPIC_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("ANTHROPIC_API_KEY")
|
|
## cohere
|
|
elif model in litellm.cohere_models:
|
|
if "COHERE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("COHERE_API_KEY")
|
|
## replicate
|
|
elif model in litellm.replicate_models:
|
|
if "REPLICATE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("REPLICATE_API_KEY")
|
|
## openrouter
|
|
elif model in litellm.openrouter_models:
|
|
if "OPENROUTER_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("OPENROUTER_API_KEY")
|
|
## vertex - text + chat models
|
|
elif model in litellm.vertex_chat_models or model in litellm.vertex_text_models:
|
|
if "VERTEXAI_PROJECT" in os.environ and "VERTEXAI_LOCATION" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.extend(["VERTEXAI_PROJECT", "VERTEXAI_PROJECT"])
|
|
## huggingface
|
|
elif model in litellm.huggingface_models:
|
|
if "HUGGINGFACE_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("HUGGINGFACE_API_KEY")
|
|
## ai21
|
|
elif model in litellm.ai21_models:
|
|
if "AI21_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("AI21_API_KEY")
|
|
## together_ai
|
|
elif model in litellm.together_ai_models:
|
|
if "TOGETHERAI_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("TOGETHERAI_API_KEY")
|
|
## aleph_alpha
|
|
elif model in litellm.aleph_alpha_models:
|
|
if "ALEPH_ALPHA_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("ALEPH_ALPHA_API_KEY")
|
|
## baseten
|
|
elif model in litellm.baseten_models:
|
|
if "BASETEN_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("BASETEN_API_KEY")
|
|
## nlp_cloud
|
|
elif model in litellm.nlp_cloud_models:
|
|
if "NLP_CLOUD_API_KEY" in os.environ:
|
|
keys_in_environment = True
|
|
else:
|
|
missing_keys.append("NLP_CLOUD_API_KEY")
|
|
return {"keys_in_environment": keys_in_environment, "missing_keys": missing_keys}
|
|
|
|
|
|
def set_callbacks(callback_list, function_id=None):
|
|
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, traceloopLogger, heliconeLogger, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger, promptLayerLogger, langFuseLogger, customLogger, weightsBiasesLogger, langsmithLogger, dynamoLogger
|
|
try:
|
|
for callback in callback_list:
|
|
print_verbose(f"callback: {callback}")
|
|
if callback == "sentry":
|
|
try:
|
|
import sentry_sdk
|
|
except ImportError:
|
|
print_verbose("Package 'sentry_sdk' is missing. Installing it...")
|
|
subprocess.check_call(
|
|
[sys.executable, "-m", "pip", "install", "sentry_sdk"]
|
|
)
|
|
import sentry_sdk
|
|
sentry_sdk_instance = sentry_sdk
|
|
sentry_trace_rate = (
|
|
os.environ.get("SENTRY_API_TRACE_RATE")
|
|
if "SENTRY_API_TRACE_RATE" in os.environ
|
|
else "1.0"
|
|
)
|
|
sentry_sdk_instance.init(
|
|
dsn=os.environ.get("SENTRY_DSN"),
|
|
traces_sample_rate=float(sentry_trace_rate),
|
|
)
|
|
capture_exception = sentry_sdk_instance.capture_exception
|
|
add_breadcrumb = sentry_sdk_instance.add_breadcrumb
|
|
elif callback == "posthog":
|
|
try:
|
|
from posthog import Posthog
|
|
except ImportError:
|
|
print_verbose("Package 'posthog' is missing. Installing it...")
|
|
subprocess.check_call(
|
|
[sys.executable, "-m", "pip", "install", "posthog"]
|
|
)
|
|
from posthog import Posthog
|
|
posthog = Posthog(
|
|
project_api_key=os.environ.get("POSTHOG_API_KEY"),
|
|
host=os.environ.get("POSTHOG_API_URL"),
|
|
)
|
|
elif callback == "slack":
|
|
try:
|
|
from slack_bolt import App
|
|
except ImportError:
|
|
print_verbose("Package 'slack_bolt' is missing. Installing it...")
|
|
subprocess.check_call(
|
|
[sys.executable, "-m", "pip", "install", "slack_bolt"]
|
|
)
|
|
from slack_bolt import App
|
|
slack_app = App(
|
|
token=os.environ.get("SLACK_API_TOKEN"),
|
|
signing_secret=os.environ.get("SLACK_API_SECRET"),
|
|
)
|
|
alerts_channel = os.environ["SLACK_API_CHANNEL"]
|
|
print_verbose(f"Initialized Slack App: {slack_app}")
|
|
elif callback == "traceloop":
|
|
traceloopLogger = TraceloopLogger()
|
|
elif callback == "helicone":
|
|
heliconeLogger = HeliconeLogger()
|
|
elif callback == "llmonitor":
|
|
llmonitorLogger = LLMonitorLogger()
|
|
elif callback == "promptlayer":
|
|
promptLayerLogger = PromptLayerLogger()
|
|
elif callback == "langfuse":
|
|
langFuseLogger = LangFuseLogger()
|
|
elif callback == "dynamodb":
|
|
dynamoLogger = DyanmoDBLogger()
|
|
elif callback == "wandb":
|
|
weightsBiasesLogger = WeightsBiasesLogger()
|
|
elif callback == "langsmith":
|
|
langsmithLogger = LangsmithLogger()
|
|
elif callback == "aispend":
|
|
aispendLogger = AISpendLogger()
|
|
elif callback == "berrispend":
|
|
berrispendLogger = BerriSpendLogger()
|
|
elif callback == "supabase":
|
|
print_verbose(f"instantiating supabase")
|
|
supabaseClient = Supabase()
|
|
elif callback == "lite_debugger":
|
|
print_verbose(f"instantiating lite_debugger")
|
|
if function_id:
|
|
liteDebuggerClient = LiteDebugger(email=function_id)
|
|
elif litellm.token:
|
|
liteDebuggerClient = LiteDebugger(email=litellm.token)
|
|
elif litellm.email:
|
|
liteDebuggerClient = LiteDebugger(email=litellm.email)
|
|
else:
|
|
liteDebuggerClient = LiteDebugger(email=str(uuid.uuid4()))
|
|
elif callable(callback):
|
|
customLogger = CustomLogger()
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
# NOTE: DEPRECATING this in favor of using failure_handler() in Logging:
|
|
def handle_failure(exception, traceback_exception, start_time, end_time, args, kwargs):
|
|
global sentry_sdk_instance, capture_exception, add_breadcrumb, posthog, slack_app, alerts_channel, aispendLogger, berrispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger
|
|
try:
|
|
# print_verbose(f"handle_failure args: {args}")
|
|
# print_verbose(f"handle_failure kwargs: {kwargs}")
|
|
|
|
success_handler = additional_details.pop("success_handler", None)
|
|
failure_handler = additional_details.pop("failure_handler", None)
|
|
|
|
additional_details["Event_Name"] = additional_details.pop(
|
|
"failed_event_name", "litellm.failed_query"
|
|
)
|
|
print_verbose(f"self.failure_callback: {litellm.failure_callback}")
|
|
for callback in litellm.failure_callback:
|
|
try:
|
|
if callback == "slack":
|
|
slack_msg = ""
|
|
if len(kwargs) > 0:
|
|
for key in kwargs:
|
|
slack_msg += f"{key}: {kwargs[key]}\n"
|
|
if len(args) > 0:
|
|
for i, arg in enumerate(args):
|
|
slack_msg += f"LiteLLM_Args_{str(i)}: {arg}"
|
|
for detail in additional_details:
|
|
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
|
slack_msg += f"Traceback: {traceback_exception}"
|
|
slack_app.client.chat_postMessage(
|
|
channel=alerts_channel, text=slack_msg
|
|
)
|
|
elif callback == "sentry":
|
|
capture_exception(exception)
|
|
elif callback == "posthog":
|
|
print_verbose(
|
|
f"inside posthog, additional_details: {len(additional_details.keys())}"
|
|
)
|
|
ph_obj = {}
|
|
if len(kwargs) > 0:
|
|
ph_obj = kwargs
|
|
if len(args) > 0:
|
|
for i, arg in enumerate(args):
|
|
ph_obj["litellm_args_" + str(i)] = arg
|
|
for detail in additional_details:
|
|
ph_obj[detail] = additional_details[detail]
|
|
event_name = additional_details["Event_Name"]
|
|
print_verbose(f"ph_obj: {ph_obj}")
|
|
print_verbose(f"PostHog Event Name: {event_name}")
|
|
if "user_id" in additional_details:
|
|
posthog.capture(
|
|
additional_details["user_id"], event_name, ph_obj
|
|
)
|
|
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
|
unique_id = str(uuid.uuid4())
|
|
posthog.capture(unique_id, event_name)
|
|
print_verbose(f"successfully logged to PostHog!")
|
|
elif callback == "berrispend":
|
|
print_verbose("reaches berrispend for logging!")
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
messages = args[1] if len(args) > 1 else kwargs["messages"]
|
|
result = {
|
|
"model": model,
|
|
"created": time.time(),
|
|
"error": traceback_exception,
|
|
"usage": {
|
|
"prompt_tokens": prompt_token_calculator(
|
|
model, messages=messages
|
|
),
|
|
"completion_tokens": 0,
|
|
},
|
|
}
|
|
berrispendLogger.log_event(
|
|
model=model,
|
|
messages=messages,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
elif callback == "aispend":
|
|
print_verbose("reaches aispend for logging!")
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
messages = args[1] if len(args) > 1 else kwargs["messages"]
|
|
result = {
|
|
"model": model,
|
|
"created": time.time(),
|
|
"usage": {
|
|
"prompt_tokens": prompt_token_calculator(
|
|
model, messages=messages
|
|
),
|
|
"completion_tokens": 0,
|
|
},
|
|
}
|
|
aispendLogger.log_event(
|
|
model=model,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
elif callback == "supabase":
|
|
print_verbose("reaches supabase for logging!")
|
|
print_verbose(f"supabaseClient: {supabaseClient}")
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
messages = args[1] if len(args) > 1 else kwargs["messages"]
|
|
result = {
|
|
"model": model,
|
|
"created": time.time(),
|
|
"error": traceback_exception,
|
|
"usage": {
|
|
"prompt_tokens": prompt_token_calculator(
|
|
model, messages=messages
|
|
),
|
|
"completion_tokens": 0,
|
|
},
|
|
}
|
|
supabaseClient.log_event(
|
|
model=model,
|
|
messages=messages,
|
|
end_user=kwargs.get("user", "default"),
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
litellm_call_id=kwargs["litellm_call_id"],
|
|
print_verbose=print_verbose,
|
|
)
|
|
except:
|
|
print_verbose(
|
|
f"Error Occurred while logging failure: {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
if failure_handler and callable(failure_handler):
|
|
call_details = {
|
|
"exception": exception,
|
|
"additional_details": additional_details,
|
|
}
|
|
failure_handler(call_details)
|
|
pass
|
|
except Exception as e:
|
|
# LOGGING
|
|
exception_logging(logger_fn=user_logger_fn, exception=e)
|
|
pass
|
|
|
|
|
|
async def convert_to_streaming_response_async(response_object: Optional[dict] = None):
|
|
"""
|
|
Asynchronously converts a response object to a streaming response.
|
|
|
|
Args:
|
|
response_object (Optional[dict]): The response object to be converted. Defaults to None.
|
|
|
|
Raises:
|
|
Exception: If the response object is None.
|
|
|
|
Yields:
|
|
ModelResponse: The converted streaming response object.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if response_object is None:
|
|
raise Exception("Error in response object format")
|
|
|
|
model_response_object = ModelResponse(stream=True)
|
|
|
|
if model_response_object is None:
|
|
raise Exception("Error in response creating model response object")
|
|
|
|
choice_list = []
|
|
|
|
for idx, choice in enumerate(response_object["choices"]):
|
|
delta = Delta(
|
|
content=choice["message"].get("content", None),
|
|
role=choice["message"]["role"],
|
|
function_call=choice["message"].get("function_call", None),
|
|
tool_calls=choice["message"].get("tool_calls", None),
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
|
|
if finish_reason is None:
|
|
finish_reason = choice.get("finish_details")
|
|
|
|
logprobs = choice.get("logprobs", None)
|
|
|
|
choice = StreamingChoices(
|
|
finish_reason=finish_reason, index=idx, delta=delta, logprobs=logprobs
|
|
)
|
|
choice_list.append(choice)
|
|
|
|
model_response_object.choices = choice_list
|
|
|
|
if "usage" in response_object and response_object["usage"] is not None:
|
|
model_response_object.usage = Usage(
|
|
completion_tokens=response_object["usage"].get("completion_tokens", 0),
|
|
prompt_tokens=response_object["usage"].get("prompt_tokens", 0),
|
|
total_tokens=response_object["usage"].get("total_tokens", 0),
|
|
)
|
|
|
|
if "id" in response_object:
|
|
model_response_object.id = response_object["id"]
|
|
|
|
if "system_fingerprint" in response_object:
|
|
model_response_object.system_fingerprint = response_object["system_fingerprint"]
|
|
|
|
if "model" in response_object:
|
|
model_response_object.model = response_object["model"]
|
|
|
|
yield model_response_object
|
|
await asyncio.sleep(0)
|
|
|
|
|
|
def convert_to_streaming_response(response_object: Optional[dict] = None):
|
|
# used for yielding Cache hits when stream == True
|
|
if response_object is None:
|
|
raise Exception("Error in response object format")
|
|
|
|
model_response_object = ModelResponse(stream=True)
|
|
choice_list = []
|
|
for idx, choice in enumerate(response_object["choices"]):
|
|
delta = Delta(
|
|
content=choice["message"].get("content", None),
|
|
role=choice["message"]["role"],
|
|
function_call=choice["message"].get("function_call", None),
|
|
tool_calls=choice["message"].get("tool_calls", None),
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
if finish_reason == None:
|
|
# gpt-4 vision can return 'finish_reason' or 'finish_details'
|
|
finish_reason = choice.get("finish_details")
|
|
logprobs = choice.get("logprobs", None)
|
|
choice = StreamingChoices(
|
|
finish_reason=finish_reason, index=idx, delta=delta, logprobs=logprobs
|
|
)
|
|
|
|
choice_list.append(choice)
|
|
model_response_object.choices = choice_list
|
|
|
|
if "usage" in response_object and response_object["usage"] is not None:
|
|
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
|
|
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
|
|
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
|
|
|
if "id" in response_object:
|
|
model_response_object.id = response_object["id"]
|
|
|
|
if "system_fingerprint" in response_object:
|
|
model_response_object.system_fingerprint = response_object["system_fingerprint"]
|
|
|
|
if "model" in response_object:
|
|
model_response_object.model = response_object["model"]
|
|
yield model_response_object
|
|
|
|
|
|
def convert_to_model_response_object(
|
|
response_object: Optional[dict] = None,
|
|
model_response_object: Optional[
|
|
Union[ModelResponse, EmbeddingResponse, ImageResponse]
|
|
] = None,
|
|
response_type: Literal[
|
|
"completion", "embedding", "image_generation"
|
|
] = "completion",
|
|
stream=False,
|
|
):
|
|
try:
|
|
if response_type == "completion" and (
|
|
model_response_object is None
|
|
or isinstance(model_response_object, ModelResponse)
|
|
):
|
|
if response_object is None or model_response_object is None:
|
|
raise Exception("Error in response object format")
|
|
if stream == True:
|
|
# for returning cached responses, we need to yield a generator
|
|
return convert_to_streaming_response(response_object=response_object)
|
|
choice_list = []
|
|
for idx, choice in enumerate(response_object["choices"]):
|
|
message = Message(
|
|
content=choice["message"].get("content", None),
|
|
role=choice["message"]["role"],
|
|
function_call=choice["message"].get("function_call", None),
|
|
tool_calls=choice["message"].get("tool_calls", None),
|
|
)
|
|
finish_reason = choice.get("finish_reason", None)
|
|
if finish_reason == None:
|
|
# gpt-4 vision can return 'finish_reason' or 'finish_details'
|
|
finish_reason = choice.get("finish_details")
|
|
logprobs = choice.get("logprobs", None)
|
|
choice = Choices(
|
|
finish_reason=finish_reason,
|
|
index=idx,
|
|
message=message,
|
|
logprobs=logprobs,
|
|
)
|
|
choice_list.append(choice)
|
|
model_response_object.choices = choice_list
|
|
|
|
if "usage" in response_object and response_object["usage"] is not None:
|
|
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
|
|
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
|
|
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
|
|
|
if "id" in response_object:
|
|
model_response_object.id = response_object["id"]
|
|
|
|
if "system_fingerprint" in response_object:
|
|
model_response_object.system_fingerprint = response_object[
|
|
"system_fingerprint"
|
|
]
|
|
|
|
if "model" in response_object:
|
|
model_response_object.model = response_object["model"]
|
|
return model_response_object
|
|
elif response_type == "embedding" and (
|
|
model_response_object is None
|
|
or isinstance(model_response_object, EmbeddingResponse)
|
|
):
|
|
if response_object is None:
|
|
raise Exception("Error in response object format")
|
|
|
|
if model_response_object is None:
|
|
model_response_object = EmbeddingResponse()
|
|
|
|
if "model" in response_object:
|
|
model_response_object.model = response_object["model"]
|
|
|
|
if "object" in response_object:
|
|
model_response_object.object = response_object["object"]
|
|
|
|
model_response_object.data = response_object["data"]
|
|
|
|
if "usage" in response_object and response_object["usage"] is not None:
|
|
model_response_object.usage.completion_tokens = response_object["usage"].get("completion_tokens", 0) # type: ignore
|
|
model_response_object.usage.prompt_tokens = response_object["usage"].get("prompt_tokens", 0) # type: ignore
|
|
model_response_object.usage.total_tokens = response_object["usage"].get("total_tokens", 0) # type: ignore
|
|
|
|
return model_response_object
|
|
elif response_type == "image_generation" and (
|
|
model_response_object is None
|
|
or isinstance(model_response_object, ImageResponse)
|
|
):
|
|
if response_object is None:
|
|
raise Exception("Error in response object format")
|
|
|
|
if model_response_object is None:
|
|
model_response_object = ImageResponse()
|
|
|
|
if "created" in response_object:
|
|
model_response_object.created = response_object["created"]
|
|
|
|
if "data" in response_object:
|
|
model_response_object.data = response_object["data"]
|
|
|
|
return model_response_object
|
|
except Exception as e:
|
|
raise Exception(f"Invalid response object {e}")
|
|
|
|
|
|
# NOTE: DEPRECATING this in favor of using success_handler() in Logging:
|
|
def handle_success(args, kwargs, result, start_time, end_time):
|
|
global heliconeLogger, aispendLogger, supabaseClient, liteDebuggerClient, llmonitorLogger
|
|
try:
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
input = (
|
|
args[1]
|
|
if len(args) > 1
|
|
else kwargs.get("messages", kwargs.get("input", None))
|
|
)
|
|
success_handler = additional_details.pop("success_handler", None)
|
|
failure_handler = additional_details.pop("failure_handler", None)
|
|
additional_details["Event_Name"] = additional_details.pop(
|
|
"successful_event_name", "litellm.succes_query"
|
|
)
|
|
for callback in litellm.success_callback:
|
|
try:
|
|
if callback == "posthog":
|
|
ph_obj = {}
|
|
for detail in additional_details:
|
|
ph_obj[detail] = additional_details[detail]
|
|
event_name = additional_details["Event_Name"]
|
|
if "user_id" in additional_details:
|
|
posthog.capture(
|
|
additional_details["user_id"], event_name, ph_obj
|
|
)
|
|
else: # PostHog calls require a unique id to identify a user - https://posthog.com/docs/libraries/python
|
|
unique_id = str(uuid.uuid4())
|
|
posthog.capture(unique_id, event_name, ph_obj)
|
|
pass
|
|
elif callback == "slack":
|
|
slack_msg = ""
|
|
for detail in additional_details:
|
|
slack_msg += f"{detail}: {additional_details[detail]}\n"
|
|
slack_app.client.chat_postMessage(
|
|
channel=alerts_channel, text=slack_msg
|
|
)
|
|
elif callback == "aispend":
|
|
print_verbose("reaches aispend for logging!")
|
|
model = args[0] if len(args) > 0 else kwargs["model"]
|
|
aispendLogger.log_event(
|
|
model=model,
|
|
response_obj=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
print_verbose=print_verbose,
|
|
)
|
|
except Exception as e:
|
|
# LOGGING
|
|
exception_logging(logger_fn=user_logger_fn, exception=e)
|
|
print_verbose(
|
|
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
if success_handler and callable(success_handler):
|
|
success_handler(args, kwargs)
|
|
pass
|
|
except Exception as e:
|
|
# LOGGING
|
|
exception_logging(logger_fn=user_logger_fn, exception=e)
|
|
print_verbose(
|
|
f"[Non-Blocking] Success Callback Error - {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
|
|
def acreate(*args, **kwargs): ## Thin client to handle the acreate langchain call
|
|
return litellm.acompletion(*args, **kwargs)
|
|
|
|
|
|
def prompt_token_calculator(model, messages):
|
|
# use tiktoken or anthropic's tokenizer depending on the model
|
|
text = " ".join(message["content"] for message in messages)
|
|
num_tokens = 0
|
|
if "claude" in model:
|
|
try:
|
|
import anthropic
|
|
except:
|
|
Exception("Anthropic import failed please run `pip install anthropic`")
|
|
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
|
|
|
anthropic = Anthropic()
|
|
num_tokens = anthropic.count_tokens(text)
|
|
else:
|
|
num_tokens = len(encoding.encode(text))
|
|
return num_tokens
|
|
|
|
|
|
def valid_model(model):
|
|
try:
|
|
# for a given model name, check if the user has the right permissions to access the model
|
|
if (
|
|
model in litellm.open_ai_chat_completion_models
|
|
or model in litellm.open_ai_text_completion_models
|
|
):
|
|
openai.Model.retrieve(model)
|
|
else:
|
|
messages = [{"role": "user", "content": "Hello World"}]
|
|
litellm.completion(model=model, messages=messages)
|
|
except:
|
|
raise BadRequestError(message="", model=model, llm_provider="")
|
|
|
|
|
|
def check_valid_key(model: str, api_key: str):
|
|
"""
|
|
Checks if a given API key is valid for a specific model by making a litellm.completion call with max_tokens=10
|
|
|
|
Args:
|
|
model (str): The name of the model to check the API key against.
|
|
api_key (str): The API key to be checked.
|
|
|
|
Returns:
|
|
bool: True if the API key is valid for the model, False otherwise.
|
|
"""
|
|
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
try:
|
|
litellm.completion(
|
|
model=model, messages=messages, api_key=api_key, max_tokens=10
|
|
)
|
|
return True
|
|
except AuthenticationError as e:
|
|
return False
|
|
except Exception as e:
|
|
return False
|
|
|
|
|
|
def _should_retry(status_code: int):
|
|
"""
|
|
Reimplementation of openai's should retry logic, since that one can't be imported.
|
|
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L639
|
|
"""
|
|
# If the server explicitly says whether or not to retry, obey.
|
|
# Retry on request timeouts.
|
|
if status_code == 408:
|
|
return True
|
|
|
|
# Retry on lock timeouts.
|
|
if status_code == 409:
|
|
return True
|
|
|
|
# Retry on rate limits.
|
|
if status_code == 429:
|
|
return True
|
|
|
|
# Retry internal errors.
|
|
if status_code >= 500:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def _calculate_retry_after(
|
|
remaining_retries: int,
|
|
max_retries: int,
|
|
response_headers: Optional[httpx.Headers] = None,
|
|
min_timeout: int = 0,
|
|
):
|
|
"""
|
|
Reimplementation of openai's calculate retry after, since that one can't be imported.
|
|
https://github.com/openai/openai-python/blob/af67cfab4210d8e497c05390ce14f39105c77519/src/openai/_base_client.py#L631
|
|
"""
|
|
try:
|
|
import email # openai import
|
|
|
|
# About the Retry-After header: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After
|
|
#
|
|
# <http-date>". See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After#syntax for
|
|
# details.
|
|
if response_headers is not None:
|
|
retry_header = response_headers.get("retry-after")
|
|
try:
|
|
retry_after = int(retry_header)
|
|
except Exception:
|
|
retry_date_tuple = email.utils.parsedate_tz(retry_header)
|
|
if retry_date_tuple is None:
|
|
retry_after = -1
|
|
else:
|
|
retry_date = email.utils.mktime_tz(retry_date_tuple)
|
|
retry_after = int(retry_date - time.time())
|
|
else:
|
|
retry_after = -1
|
|
|
|
except Exception:
|
|
retry_after = -1
|
|
|
|
# If the API asks us to wait a certain amount of time (and it's a reasonable amount), just do what it says.
|
|
if 0 < retry_after <= 60:
|
|
return retry_after
|
|
|
|
initial_retry_delay = 0.5
|
|
max_retry_delay = 8.0
|
|
nb_retries = max_retries - remaining_retries
|
|
|
|
# Apply exponential backoff, but not more than the max.
|
|
sleep_seconds = min(initial_retry_delay * pow(2.0, nb_retries), max_retry_delay)
|
|
|
|
# Apply some jitter, plus-or-minus half a second.
|
|
jitter = 1 - 0.25 * random.random()
|
|
timeout = sleep_seconds * jitter
|
|
return timeout if timeout >= min_timeout else min_timeout
|
|
|
|
|
|
# integration helper function
|
|
def modify_integration(integration_name, integration_params):
|
|
global supabaseClient
|
|
if integration_name == "supabase":
|
|
if "table_name" in integration_params:
|
|
Supabase.supabase_table_name = integration_params["table_name"]
|
|
|
|
|
|
# custom prompt helper function
|
|
def register_prompt_template(
|
|
model: str,
|
|
roles: dict,
|
|
initial_prompt_value: str = "",
|
|
final_prompt_value: str = "",
|
|
):
|
|
"""
|
|
Register a prompt template to follow your custom format for a given model
|
|
|
|
Args:
|
|
model (str): The name of the model.
|
|
roles (dict): A dictionary mapping roles to their respective prompt values.
|
|
initial_prompt_value (str, optional): The initial prompt value. Defaults to "".
|
|
final_prompt_value (str, optional): The final prompt value. Defaults to "".
|
|
|
|
Returns:
|
|
dict: The updated custom prompt dictionary.
|
|
Example usage:
|
|
```
|
|
import litellm
|
|
litellm.register_prompt_template(
|
|
model="llama-2",
|
|
initial_prompt_value="You are a good assistant" # [OPTIONAL]
|
|
roles={
|
|
"system": {
|
|
"pre_message": "[INST] <<SYS>>\n", # [OPTIONAL]
|
|
"post_message": "\n<</SYS>>\n [/INST]\n" # [OPTIONAL]
|
|
},
|
|
"user": {
|
|
"pre_message": "[INST] ", # [OPTIONAL]
|
|
"post_message": " [/INST]" # [OPTIONAL]
|
|
},
|
|
"assistant": {
|
|
"pre_message": "\n" # [OPTIONAL]
|
|
"post_message": "\n" # [OPTIONAL]
|
|
}
|
|
}
|
|
final_prompt_value="Now answer as best you can:" # [OPTIONAL]
|
|
)
|
|
```
|
|
"""
|
|
model = get_llm_provider(model=model)[0]
|
|
litellm.custom_prompt_dict[model] = {
|
|
"roles": roles,
|
|
"initial_prompt_value": initial_prompt_value,
|
|
"final_prompt_value": final_prompt_value,
|
|
}
|
|
return litellm.custom_prompt_dict
|
|
|
|
|
|
####### DEPRECATED ################
|
|
|
|
|
|
def get_all_keys(llm_provider=None):
|
|
try:
|
|
global last_fetched_at_keys
|
|
# if user is using hosted product -> instantiate their env with their hosted api keys - refresh every 5 minutes
|
|
print_verbose(f"Reaches get all keys, llm_provider: {llm_provider}")
|
|
user_email = (
|
|
os.getenv("LITELLM_EMAIL")
|
|
or litellm.email
|
|
or litellm.token
|
|
or os.getenv("LITELLM_TOKEN")
|
|
)
|
|
if user_email:
|
|
time_delta = 0
|
|
if last_fetched_at_keys != None:
|
|
current_time = time.time()
|
|
time_delta = current_time - last_fetched_at_keys
|
|
if (
|
|
time_delta > 300 or last_fetched_at_keys == None or llm_provider
|
|
): # if the llm provider is passed in , assume this happening due to an AuthError for that provider
|
|
# make the api call
|
|
last_fetched_at = time.time()
|
|
print_verbose(f"last_fetched_at: {last_fetched_at}")
|
|
response = requests.post(
|
|
url="http://api.litellm.ai/get_all_keys",
|
|
headers={"content-type": "application/json"},
|
|
data=json.dumps({"user_email": user_email}),
|
|
)
|
|
print_verbose(f"get model key response: {response.text}")
|
|
data = response.json()
|
|
# update model list
|
|
for key, value in data[
|
|
"model_keys"
|
|
].items(): # follows the LITELLM API KEY format - <UPPERCASE_PROVIDER_NAME>_API_KEY - e.g. HUGGINGFACE_API_KEY
|
|
os.environ[key] = value
|
|
# set model alias map
|
|
for model_alias, value in data["model_alias_map"].items():
|
|
litellm.model_alias_map[model_alias] = value
|
|
return "it worked!"
|
|
return None
|
|
return None
|
|
except:
|
|
print_verbose(
|
|
f"[Non-Blocking Error] get_all_keys error - {traceback.format_exc()}"
|
|
)
|
|
pass
|
|
|
|
|
|
def get_model_list():
|
|
global last_fetched_at, print_verbose
|
|
try:
|
|
# if user is using hosted product -> get their updated model list
|
|
user_email = (
|
|
os.getenv("LITELLM_EMAIL")
|
|
or litellm.email
|
|
or litellm.token
|
|
or os.getenv("LITELLM_TOKEN")
|
|
)
|
|
if user_email:
|
|
# make the api call
|
|
last_fetched_at = time.time()
|
|
print_verbose(f"last_fetched_at: {last_fetched_at}")
|
|
response = requests.post(
|
|
url="http://api.litellm.ai/get_model_list",
|
|
headers={"content-type": "application/json"},
|
|
data=json.dumps({"user_email": user_email}),
|
|
)
|
|
print_verbose(f"get_model_list response: {response.text}")
|
|
data = response.json()
|
|
# update model list
|
|
model_list = data["model_list"]
|
|
# # check if all model providers are in environment
|
|
# model_providers = data["model_providers"]
|
|
# missing_llm_provider = None
|
|
# for item in model_providers:
|
|
# if f"{item.upper()}_API_KEY" not in os.environ:
|
|
# missing_llm_provider = item
|
|
# break
|
|
# # update environment - if required
|
|
# threading.Thread(target=get_all_keys, args=(missing_llm_provider)).start()
|
|
return model_list
|
|
return [] # return empty list by default
|
|
except:
|
|
print_verbose(
|
|
f"[Non-Blocking Error] get_model_list error - {traceback.format_exc()}"
|
|
)
|
|
|
|
|
|
####### EXCEPTION MAPPING ################
|
|
def exception_type(
|
|
model,
|
|
original_exception,
|
|
custom_llm_provider,
|
|
completion_kwargs={},
|
|
):
|
|
global user_logger_fn, liteDebuggerClient
|
|
exception_mapping_worked = False
|
|
if litellm.suppress_debug_info is False:
|
|
print() # noqa
|
|
print( # noqa
|
|
"\033[1;31mGive Feedback / Get Help: https://github.com/BerriAI/litellm/issues/new\033[0m" # noqa
|
|
) # noqa
|
|
print( # noqa
|
|
"LiteLLM.Info: If you need to debug this error, use `litellm.set_verbose=True'." # noqa
|
|
) # noqa
|
|
print() # noqa
|
|
try:
|
|
if model:
|
|
error_str = str(original_exception)
|
|
if isinstance(original_exception, BaseException):
|
|
exception_type = type(original_exception).__name__
|
|
else:
|
|
exception_type = ""
|
|
|
|
if "Request Timeout Error" in error_str or "Request timed out" in error_str:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"APITimeoutError - Request timed out",
|
|
model=model,
|
|
llm_provider=custom_llm_provider,
|
|
)
|
|
|
|
if (
|
|
custom_llm_provider == "openai"
|
|
or custom_llm_provider == "text-completion-openai"
|
|
or custom_llm_provider == "custom_openai"
|
|
or custom_llm_provider in litellm.openai_compatible_providers
|
|
):
|
|
if (
|
|
"This model's maximum context length is" in error_str
|
|
or "Request too large" in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
llm_provider="openai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"invalid_request_error" in error_str
|
|
and "model_not_found" in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise NotFoundError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
llm_provider="openai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"invalid_request_error" in error_str
|
|
and "Incorrect API key provided" not in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
llm_provider="openai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif hasattr(original_exception, "status_code"):
|
|
exception_mapping_worked = True
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
llm_provider="openai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 404:
|
|
exception_mapping_worked = True
|
|
raise NotFoundError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
)
|
|
elif original_exception.status_code == 422:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 503:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 504: # gateway timeout error
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="openai",
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"OpenAIException - {original_exception.message}",
|
|
llm_provider="openai",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
else:
|
|
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
|
|
raise APIConnectionError(
|
|
__cause__=original_exception.__cause__,
|
|
llm_provider=custom_llm_provider,
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "anthropic": # one of the anthropics
|
|
if hasattr(original_exception, "message"):
|
|
if (
|
|
"prompt is too long" in original_exception.message
|
|
or "prompt: length" in original_exception.message
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=original_exception.message,
|
|
model=model,
|
|
llm_provider="anthropic",
|
|
response=original_exception.response,
|
|
)
|
|
if "Invalid API Key" in original_exception.message:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=original_exception.message,
|
|
model=model,
|
|
llm_provider="anthropic",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
print_verbose(f"status_code: {original_exception.status_code}")
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
llm_provider="anthropic",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 400
|
|
or original_exception.status_code == 413
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="anthropic",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="anthropic",
|
|
request=original_exception.request,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
llm_provider="anthropic",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
llm_provider="anthropic",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"AnthropicException - {original_exception.message}",
|
|
llm_provider="anthropic",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "replicate":
|
|
if "Incorrect authentication token" in error_str:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"ReplicateException - {error_str}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "input is too long" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"ReplicateException - {error_str}",
|
|
model=model,
|
|
llm_provider="replicate",
|
|
response=original_exception.response,
|
|
)
|
|
elif exception_type == "ModelError":
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"ReplicateException - {error_str}",
|
|
model=model,
|
|
llm_provider="replicate",
|
|
response=original_exception.response,
|
|
)
|
|
elif "Request was throttled" in error_str:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"ReplicateException - {error_str}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"ReplicateException - {original_exception.message}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 400
|
|
or original_exception.status_code == 422
|
|
or original_exception.status_code == 413
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"ReplicateException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="replicate",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"ReplicateException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="replicate",
|
|
request=original_exception.request,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"ReplicateException - {original_exception.message}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"ReplicateException - {original_exception.message}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=500,
|
|
message=f"ReplicateException - {str(original_exception)}",
|
|
llm_provider="replicate",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "bedrock":
|
|
if (
|
|
"too many tokens" in error_str
|
|
or "expected maxLength:" in error_str
|
|
or "Input is too long" in error_str
|
|
or "Too many input tokens" in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"BedrockException: Context Window Error - {error_str}",
|
|
model=model,
|
|
llm_provider="bedrock",
|
|
response=original_exception.response,
|
|
)
|
|
if "Malformed input request" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"BedrockException - {error_str}",
|
|
model=model,
|
|
llm_provider="bedrock",
|
|
response=original_exception.response,
|
|
)
|
|
if (
|
|
"Unable to locate credentials" in error_str
|
|
or "The security token included in the request is invalid"
|
|
in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"BedrockException Invalid Authentication - {error_str}",
|
|
model=model,
|
|
llm_provider="bedrock",
|
|
response=original_exception.response,
|
|
)
|
|
if (
|
|
"throttlingException" in error_str
|
|
or "ThrottlingException" in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"BedrockException: Rate Limit Error - {error_str}",
|
|
model=model,
|
|
llm_provider="bedrock",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"BedrockException - {original_exception.message}",
|
|
llm_provider="bedrock",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"BedrockException - {original_exception.message}",
|
|
llm_provider="bedrock",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif custom_llm_provider == "sagemaker":
|
|
if "Unable to locate credentials" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"SagemakerException - {error_str}",
|
|
model=model,
|
|
llm_provider="sagemaker",
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"Input validation error: `best_of` must be > 0 and <= 2"
|
|
in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"SagemakerException - the value of 'n' must be > 0 and <= 2 for sagemaker endpoints",
|
|
model=model,
|
|
llm_provider="sagemaker",
|
|
response=original_exception.response,
|
|
)
|
|
elif custom_llm_provider == "vertex_ai":
|
|
if (
|
|
"Vertex AI API has not been used in project" in error_str
|
|
or "Unable to find your project" in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"VertexAIException - {error_str}",
|
|
model=model,
|
|
llm_provider="vertex_ai",
|
|
response=original_exception.response,
|
|
)
|
|
elif "403" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"VertexAIException - {error_str}",
|
|
model=model,
|
|
llm_provider="vertex_ai",
|
|
response=original_exception.response,
|
|
)
|
|
elif "The response was blocked." in error_str:
|
|
exception_mapping_worked = True
|
|
raise UnprocessableEntityError(
|
|
message=f"VertexAIException - {error_str}",
|
|
model=model,
|
|
llm_provider="vertex_ai",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 400:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"VertexAIException - {error_str}",
|
|
model=model,
|
|
llm_provider="vertex_ai",
|
|
response=original_exception.response,
|
|
)
|
|
if original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
message=f"VertexAIException - {error_str}",
|
|
status_code=500,
|
|
model=model,
|
|
llm_provider="vertex_ai",
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "palm":
|
|
if "503 Getting metadata" in error_str:
|
|
# auth errors look like this
|
|
# 503 Getting metadata from plugin failed with error: Reauthentication is needed. Please run `gcloud auth application-default login` to reauthenticate.
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"PalmException - Invalid api key",
|
|
model=model,
|
|
llm_provider="palm",
|
|
response=original_exception.response,
|
|
)
|
|
if "400 Request payload size exceeds" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"PalmException - {error_str}",
|
|
model=model,
|
|
llm_provider="palm",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 400:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"PalmException - {error_str}",
|
|
model=model,
|
|
llm_provider="palm",
|
|
response=original_exception.response,
|
|
)
|
|
# Dailed: Error occurred: 400 Request payload size exceeds the limit: 20000 bytes
|
|
elif custom_llm_provider == "cloudflare":
|
|
if "Authentication error" in error_str:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"Cloudflare Exception - {original_exception.message}",
|
|
llm_provider="cloudflare",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
if "must have required property" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"Cloudflare Exception - {original_exception.message}",
|
|
llm_provider="cloudflare",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif custom_llm_provider == "cohere": # Cohere
|
|
if (
|
|
"invalid api token" in error_str
|
|
or "No API key provided." in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "too many tokens" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="cohere",
|
|
response=original_exception.response,
|
|
)
|
|
elif hasattr(original_exception, "status_code"):
|
|
if (
|
|
original_exception.status_code == 400
|
|
or original_exception.status_code == 498
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"CohereConnectionError" in exception_type
|
|
): # cohere seems to fire these errors when we load test it (1k+ messages / min)
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "invalid type:" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "Unexpected server error" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
if hasattr(original_exception, "status_code"):
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"CohereException - {original_exception.message}",
|
|
llm_provider="cohere",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
raise original_exception
|
|
elif custom_llm_provider == "huggingface":
|
|
if "length limit exceeded" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=error_str,
|
|
model=model,
|
|
llm_provider="huggingface",
|
|
response=original_exception.response,
|
|
)
|
|
elif "A valid user token is required" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=error_str,
|
|
llm_provider="huggingface",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"HuggingfaceException - {original_exception.message}",
|
|
llm_provider="huggingface",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 400:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"HuggingfaceException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="huggingface",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"HuggingfaceException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="huggingface",
|
|
request=original_exception.request,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"HuggingfaceException - {original_exception.message}",
|
|
llm_provider="huggingface",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"HuggingfaceException - {original_exception.message}",
|
|
llm_provider="huggingface",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "ai21":
|
|
if hasattr(original_exception, "message"):
|
|
if "Prompt has too many tokens" in original_exception.message:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="ai21",
|
|
response=original_exception.response,
|
|
)
|
|
if "Bad or missing API token." in original_exception.message:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="ai21",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
llm_provider="ai21",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="ai21",
|
|
request=original_exception.request,
|
|
)
|
|
if original_exception.status_code == 422:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="ai21",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
llm_provider="ai21",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"AI21Exception - {original_exception.message}",
|
|
llm_provider="ai21",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "nlp_cloud":
|
|
if "detail" in error_str:
|
|
if "Input text length should not exceed" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"NLPCloudException - {error_str}",
|
|
model=model,
|
|
llm_provider="nlp_cloud",
|
|
response=original_exception.response,
|
|
)
|
|
elif "value is not a valid" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"NLPCloudException - {error_str}",
|
|
model=model,
|
|
llm_provider="nlp_cloud",
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=500,
|
|
message=f"NLPCloudException - {error_str}",
|
|
model=model,
|
|
llm_provider="nlp_cloud",
|
|
request=original_exception.request,
|
|
)
|
|
if hasattr(
|
|
original_exception, "status_code"
|
|
): # https://docs.nlpcloud.com/?shell#errors
|
|
if (
|
|
original_exception.status_code == 400
|
|
or original_exception.status_code == 406
|
|
or original_exception.status_code == 413
|
|
or original_exception.status_code == 422
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
llm_provider="nlp_cloud",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 401
|
|
or original_exception.status_code == 403
|
|
):
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
llm_provider="nlp_cloud",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 522
|
|
or original_exception.status_code == 524
|
|
):
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="nlp_cloud",
|
|
request=original_exception.request,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 429
|
|
or original_exception.status_code == 402
|
|
):
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
llm_provider="nlp_cloud",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 500
|
|
or original_exception.status_code == 503
|
|
):
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
llm_provider="nlp_cloud",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif (
|
|
original_exception.status_code == 504
|
|
or original_exception.status_code == 520
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="nlp_cloud",
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"NLPCloudException - {original_exception.message}",
|
|
llm_provider="nlp_cloud",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "together_ai":
|
|
import json
|
|
|
|
try:
|
|
error_response = json.loads(error_str)
|
|
except:
|
|
error_response = {"error": error_str}
|
|
if (
|
|
"error" in error_response
|
|
and "`inputs` tokens + `max_new_tokens` must be <="
|
|
in error_response["error"]
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"error" in error_response
|
|
and "invalid private key" in error_response["error"]
|
|
):
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
llm_provider="together_ai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"error" in error_response
|
|
and "INVALID_ARGUMENT" in error_response["error"]
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
response=original_exception.response,
|
|
)
|
|
|
|
elif (
|
|
"error" in error_response
|
|
and "API key doesn't match expected format."
|
|
in error_response["error"]
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
response=original_exception.response,
|
|
)
|
|
elif (
|
|
"error_type" in error_response
|
|
and error_response["error_type"] == "validation"
|
|
):
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
response=original_exception.response,
|
|
)
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"TogetherAIException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
request=original_exception.request,
|
|
)
|
|
elif original_exception.status_code == 422:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"TogetherAIException - {error_response['error']}",
|
|
model=model,
|
|
llm_provider="together_ai",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"TogetherAIException - {original_exception.message}",
|
|
llm_provider="together_ai",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 524:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"TogetherAIException - {original_exception.message}",
|
|
llm_provider="together_ai",
|
|
model=model,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"TogetherAIException - {original_exception.message}",
|
|
llm_provider="together_ai",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "aleph_alpha":
|
|
if (
|
|
"This is longer than the model's maximum context length"
|
|
in error_str
|
|
):
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "InvalidToken" in error_str or "No token provided" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif hasattr(original_exception, "status_code"):
|
|
print_verbose(f"status code: {original_exception.status_code}")
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
)
|
|
elif original_exception.status_code == 400:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 500:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"AlephAlphaException - {original_exception.message}",
|
|
llm_provider="aleph_alpha",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
raise original_exception
|
|
raise original_exception
|
|
elif (
|
|
custom_llm_provider == "ollama" or custom_llm_provider == "ollama_chat"
|
|
):
|
|
if isinstance(original_exception, dict):
|
|
error_str = original_exception.get("error", "")
|
|
else:
|
|
error_str = str(original_exception)
|
|
if "no such file or directory" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"OllamaException: Invalid Model/Model not loaded - {original_exception}",
|
|
model=model,
|
|
llm_provider="ollama",
|
|
response=original_exception.response,
|
|
)
|
|
elif "Failed to establish a new connection" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ServiceUnavailableError(
|
|
message=f"OllamaException: {original_exception}",
|
|
llm_provider="ollama",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "Invalid response object from API" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"OllamaException: {original_exception}",
|
|
llm_provider="ollama",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif custom_llm_provider == "vllm":
|
|
if hasattr(original_exception, "status_code"):
|
|
if original_exception.status_code == 0:
|
|
exception_mapping_worked = True
|
|
raise APIConnectionError(
|
|
message=f"VLLMException - {original_exception.message}",
|
|
llm_provider="vllm",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
elif custom_llm_provider == "azure":
|
|
if "This model's maximum context length is" in error_str:
|
|
exception_mapping_worked = True
|
|
raise ContextWindowExceededError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
llm_provider="azure",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "DeploymentNotFound" in error_str:
|
|
exception_mapping_worked = True
|
|
raise NotFoundError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
llm_provider="azure",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif "invalid_request_error" in error_str:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
llm_provider="azure",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif hasattr(original_exception, "status_code"):
|
|
exception_mapping_worked = True
|
|
if original_exception.status_code == 401:
|
|
exception_mapping_worked = True
|
|
raise AuthenticationError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
llm_provider="azure",
|
|
model=model,
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 408:
|
|
exception_mapping_worked = True
|
|
raise Timeout(
|
|
message=f"AzureException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="azure",
|
|
request=original_exception.request,
|
|
)
|
|
if original_exception.status_code == 422:
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="azure",
|
|
response=original_exception.response,
|
|
)
|
|
elif original_exception.status_code == 429:
|
|
exception_mapping_worked = True
|
|
raise RateLimitError(
|
|
message=f"AzureException - {original_exception.message}",
|
|
model=model,
|
|
llm_provider="azure",
|
|
response=original_exception.response,
|
|
)
|
|
else:
|
|
exception_mapping_worked = True
|
|
raise APIError(
|
|
status_code=original_exception.status_code,
|
|
message=f"AzureException - {original_exception.message}",
|
|
llm_provider="azure",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
else:
|
|
# if no status code then it is an APIConnectionError: https://github.com/openai/openai-python#handling-errors
|
|
raise APIConnectionError(
|
|
__cause__=original_exception.__cause__,
|
|
llm_provider="azure",
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
if (
|
|
"BadRequestError.__init__() missing 1 required positional argument: 'param'"
|
|
in str(original_exception)
|
|
): # deal with edge-case invalid request error bug in openai-python sdk
|
|
exception_mapping_worked = True
|
|
raise BadRequestError(
|
|
message=f"OpenAIException: This can happen due to missing AZURE_API_VERSION: {str(original_exception)}",
|
|
model=model,
|
|
llm_provider=custom_llm_provider,
|
|
response=original_exception.response,
|
|
)
|
|
else: # ensure generic errors always return APIConnectionError=
|
|
exception_mapping_worked = True
|
|
if hasattr(original_exception, "request"):
|
|
raise APIConnectionError(
|
|
message=f"{str(original_exception)}",
|
|
llm_provider=custom_llm_provider,
|
|
model=model,
|
|
request=original_exception.request,
|
|
)
|
|
else:
|
|
raise APIConnectionError(
|
|
message=f"{str(original_exception)}",
|
|
llm_provider=custom_llm_provider,
|
|
model=model,
|
|
request=httpx.Request(
|
|
method="POST", url="https://api.openai.com/v1/"
|
|
), # stub the request
|
|
)
|
|
except Exception as e:
|
|
# LOGGING
|
|
exception_logging(
|
|
logger_fn=user_logger_fn,
|
|
additional_args={
|
|
"exception_mapping_worked": exception_mapping_worked,
|
|
"original_exception": original_exception,
|
|
},
|
|
exception=e,
|
|
)
|
|
## AUTH ERROR
|
|
if isinstance(e, AuthenticationError) and (
|
|
litellm.email or "LITELLM_EMAIL" in os.environ
|
|
):
|
|
threading.Thread(target=get_all_keys, args=(e.llm_provider,)).start()
|
|
# don't let an error with mapping interrupt the user from receiving an error from the llm api calls
|
|
if exception_mapping_worked:
|
|
raise e
|
|
else:
|
|
raise original_exception
|
|
|
|
|
|
####### CRASH REPORTING ################
|
|
def safe_crash_reporting(model=None, exception=None, custom_llm_provider=None):
|
|
data = {
|
|
"model": model,
|
|
"exception": str(exception),
|
|
"custom_llm_provider": custom_llm_provider,
|
|
}
|
|
executor.submit(litellm_telemetry, data)
|
|
# threading.Thread(target=litellm_telemetry, args=(data,), daemon=True).start()
|
|
|
|
|
|
def get_or_generate_uuid():
|
|
temp_dir = os.path.join(os.path.abspath(os.sep), "tmp")
|
|
uuid_file = os.path.join(temp_dir, "litellm_uuid.txt")
|
|
try:
|
|
# Try to open the file and load the UUID
|
|
with open(uuid_file, "r") as file:
|
|
uuid_value = file.read()
|
|
if uuid_value:
|
|
uuid_value = uuid_value.strip()
|
|
else:
|
|
raise FileNotFoundError
|
|
|
|
except FileNotFoundError:
|
|
# Generate a new UUID if the file doesn't exist or is empty
|
|
try:
|
|
new_uuid = uuid.uuid4()
|
|
uuid_value = str(new_uuid)
|
|
with open(uuid_file, "w") as file:
|
|
file.write(uuid_value)
|
|
except: # if writing to tmp/litellm_uuid.txt then retry writing to litellm_uuid.txt
|
|
try:
|
|
new_uuid = uuid.uuid4()
|
|
uuid_value = str(new_uuid)
|
|
with open("litellm_uuid.txt", "w") as file:
|
|
file.write(uuid_value)
|
|
except: # if this 3rd attempt fails just pass
|
|
# Good first issue for someone to improve this function :)
|
|
return
|
|
except:
|
|
# [Non-Blocking Error]
|
|
return
|
|
return uuid_value
|
|
|
|
|
|
def litellm_telemetry(data):
|
|
# Load or generate the UUID
|
|
uuid_value = ""
|
|
try:
|
|
uuid_value = get_or_generate_uuid()
|
|
except:
|
|
uuid_value = str(uuid.uuid4())
|
|
try:
|
|
# Prepare the data to send to litellm logging api
|
|
try:
|
|
pkg_version = importlib.metadata.version("litellm")
|
|
except:
|
|
pkg_version = None
|
|
if "model" not in data:
|
|
data["model"] = None
|
|
payload = {"uuid": uuid_value, "data": data, "version:": pkg_version}
|
|
# Make the POST request to litellm logging api
|
|
response = requests.post(
|
|
"https://litellm-logging.onrender.com/logging",
|
|
headers={"Content-Type": "application/json"},
|
|
json=payload,
|
|
)
|
|
response.raise_for_status() # Raise an exception for HTTP errors
|
|
except:
|
|
# [Non-Blocking Error]
|
|
return
|
|
|
|
|
|
######### Secret Manager ############################
|
|
# checks if user has passed in a secret manager client
|
|
# if passed in then checks the secret there
|
|
def _is_base64(s):
|
|
try:
|
|
return base64.b64encode(base64.b64decode(s)).decode() == s
|
|
except binascii.Error:
|
|
return False
|
|
|
|
|
|
def get_secret(
|
|
secret_name: str,
|
|
default_value: Optional[str] = None,
|
|
):
|
|
key_management_system = litellm._key_management_system
|
|
if secret_name.startswith("os.environ/"):
|
|
secret_name = secret_name.replace("os.environ/", "")
|
|
try:
|
|
if litellm.secret_manager_client is not None:
|
|
try:
|
|
client = litellm.secret_manager_client
|
|
key_manager = "local"
|
|
if key_management_system is not None:
|
|
key_manager = key_management_system.value
|
|
if (
|
|
key_manager == KeyManagementSystem.AZURE_KEY_VAULT
|
|
or type(client).__module__ + "." + type(client).__name__
|
|
== "azure.keyvault.secrets._client.SecretClient"
|
|
): # support Azure Secret Client - from azure.keyvault.secrets import SecretClient
|
|
secret = client.get_secret(secret_name).value
|
|
elif (
|
|
key_manager == KeyManagementSystem.GOOGLE_KMS
|
|
or client.__class__.__name__ == "KeyManagementServiceClient"
|
|
):
|
|
encrypted_secret: Any = os.getenv(secret_name)
|
|
if encrypted_secret is None:
|
|
raise ValueError(
|
|
f"Google KMS requires the encrypted secret to be in the environment!"
|
|
)
|
|
b64_flag = _is_base64(encrypted_secret)
|
|
if b64_flag == True: # if passed in as encoded b64 string
|
|
encrypted_secret = base64.b64decode(encrypted_secret)
|
|
if not isinstance(encrypted_secret, bytes):
|
|
# If it's not, assume it's a string and encode it to bytes
|
|
ciphertext = eval(
|
|
encrypted_secret.encode()
|
|
) # assuming encrypted_secret is something like - b'\n$\x00D\xac\xb4/t)07\xe5\xf6..'
|
|
else:
|
|
ciphertext = encrypted_secret
|
|
|
|
response = client.decrypt(
|
|
request={
|
|
"name": litellm._google_kms_resource_name,
|
|
"ciphertext": ciphertext,
|
|
}
|
|
)
|
|
secret = response.plaintext.decode(
|
|
"utf-8"
|
|
) # assumes the original value was encoded with utf-8
|
|
else: # assume the default is infisicial client
|
|
secret = client.get_secret(secret_name).secret_value
|
|
except Exception as e: # check if it's in os.environ
|
|
secret = os.getenv(secret_name)
|
|
return secret
|
|
else:
|
|
return os.environ.get(secret_name)
|
|
except Exception as e:
|
|
if default_value is not None:
|
|
return default_value
|
|
else:
|
|
raise e
|
|
|
|
|
|
######## Streaming Class ############################
|
|
# wraps the completion stream to return the correct format for the model
|
|
# replicate/anthropic/cohere
|
|
class CustomStreamWrapper:
|
|
def __init__(
|
|
self, completion_stream, model, custom_llm_provider=None, logging_obj=None
|
|
):
|
|
self.model = model
|
|
self.custom_llm_provider = custom_llm_provider
|
|
self.logging_obj = logging_obj
|
|
self.completion_stream = completion_stream
|
|
self.sent_first_chunk = False
|
|
self.sent_last_chunk = False
|
|
self.special_tokens = ["<|assistant|>", "<|system|>", "<|user|>", "<s>", "</s>"]
|
|
self.holding_chunk = ""
|
|
self.complete_response = ""
|
|
_model_info = (
|
|
self.logging_obj.model_call_details.get("litellm_params", {}).get(
|
|
"model_info", {}
|
|
)
|
|
or {}
|
|
)
|
|
self._hidden_params = {
|
|
"model_id": (_model_info.get("id", None))
|
|
} # returned as x-litellm-model-id response header in proxy
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
def process_chunk(self, chunk: str):
|
|
"""
|
|
NLP Cloud streaming returns the entire response, for each chunk. Process this, to only return the delta.
|
|
"""
|
|
try:
|
|
chunk = chunk.strip()
|
|
self.complete_response = self.complete_response.strip()
|
|
|
|
if chunk.startswith(self.complete_response):
|
|
# Remove last_sent_chunk only if it appears at the start of the new chunk
|
|
chunk = chunk[len(self.complete_response) :]
|
|
|
|
self.complete_response += chunk
|
|
return chunk
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def check_special_tokens(self, chunk: str, finish_reason: Optional[str]):
|
|
hold = False
|
|
if finish_reason:
|
|
for token in self.special_tokens:
|
|
if token in chunk:
|
|
chunk = chunk.replace(token, "")
|
|
return hold, chunk
|
|
|
|
if self.sent_first_chunk is True:
|
|
return hold, chunk
|
|
|
|
curr_chunk = self.holding_chunk + chunk
|
|
curr_chunk = curr_chunk.strip()
|
|
|
|
for token in self.special_tokens:
|
|
if len(curr_chunk) < len(token) and curr_chunk in token:
|
|
hold = True
|
|
elif len(curr_chunk) >= len(token):
|
|
if token in curr_chunk:
|
|
self.holding_chunk = curr_chunk.replace(token, "")
|
|
hold = True
|
|
else:
|
|
pass
|
|
|
|
if hold is False: # reset
|
|
self.holding_chunk = ""
|
|
return hold, curr_chunk
|
|
|
|
def handle_anthropic_chunk(self, chunk):
|
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
if str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
text = data_json.get("completion", "")
|
|
if data_json.get("stop_reason", None):
|
|
is_finished = True
|
|
finish_reason = data_json["stop_reason"]
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif "error" in str_line:
|
|
raise ValueError(f"Unable to parse response. Original response: {str_line}")
|
|
else:
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
|
|
def handle_together_ai_chunk(self, chunk):
|
|
chunk = chunk.decode("utf-8")
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
if "text" in chunk:
|
|
text_index = chunk.find('"text":"') # this checks if text: exists
|
|
text_start = text_index + len('"text":"')
|
|
text_end = chunk.find('"}', text_start)
|
|
if text_index != -1 and text_end != -1:
|
|
extracted_text = chunk[text_start:text_end]
|
|
text = extracted_text
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif "[DONE]" in chunk:
|
|
return {"text": text, "is_finished": True, "finish_reason": "stop"}
|
|
elif "error" in chunk:
|
|
raise litellm.together_ai.TogetherAIError(
|
|
status_code=422, message=f"{str(chunk)}"
|
|
)
|
|
else:
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
|
|
def handle_huggingface_chunk(self, chunk):
|
|
try:
|
|
if type(chunk) != str:
|
|
chunk = chunk.decode(
|
|
"utf-8"
|
|
) # DO NOT REMOVE this: This is required for HF inference API + Streaming
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = ""
|
|
print_verbose(f"chunk: {chunk}")
|
|
if chunk.startswith("data:"):
|
|
data_json = json.loads(chunk[5:])
|
|
print_verbose(f"data json: {data_json}")
|
|
if "token" in data_json and "text" in data_json["token"]:
|
|
text = data_json["token"]["text"]
|
|
if data_json.get("details", False) and data_json["details"].get(
|
|
"finish_reason", False
|
|
):
|
|
is_finished = True
|
|
finish_reason = data_json["details"]["finish_reason"]
|
|
elif data_json.get(
|
|
"generated_text", False
|
|
): # if full generated text exists, then stream is complete
|
|
text = "" # don't return the final bos token
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif "error" in chunk:
|
|
raise ValueError(chunk)
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
# raise(e)
|
|
|
|
def handle_ai21_chunk(self, chunk): # fake streaming
|
|
chunk = chunk.decode("utf-8")
|
|
data_json = json.loads(chunk)
|
|
try:
|
|
text = data_json["completions"][0]["data"]["text"]
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_maritalk_chunk(self, chunk): # fake streaming
|
|
chunk = chunk.decode("utf-8")
|
|
data_json = json.loads(chunk)
|
|
try:
|
|
text = data_json["answer"]
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_nlp_cloud_chunk(self, chunk):
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = ""
|
|
try:
|
|
if "dolphin" in self.model:
|
|
chunk = self.process_chunk(chunk=chunk)
|
|
else:
|
|
data_json = json.loads(chunk)
|
|
chunk = data_json["generated_text"]
|
|
text = chunk
|
|
if "[DONE]" in text:
|
|
text = text.replace("[DONE]", "")
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except Exception as e:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_aleph_alpha_chunk(self, chunk):
|
|
chunk = chunk.decode("utf-8")
|
|
data_json = json.loads(chunk)
|
|
try:
|
|
text = data_json["completions"][0]["completion"]
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_cohere_chunk(self, chunk):
|
|
chunk = chunk.decode("utf-8")
|
|
data_json = json.loads(chunk)
|
|
try:
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = ""
|
|
if "text" in data_json:
|
|
text = data_json["text"]
|
|
elif "is_finished" in data_json:
|
|
is_finished = data_json["is_finished"]
|
|
finish_reason = data_json["finish_reason"]
|
|
else:
|
|
raise Exception(data_json)
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_azure_chunk(self, chunk):
|
|
is_finished = False
|
|
finish_reason = ""
|
|
text = ""
|
|
print_verbose(f"chunk: {chunk}")
|
|
if "data: [DONE]" in chunk:
|
|
text = ""
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif chunk.startswith("data:"):
|
|
data_json = json.loads(chunk[5:]) # chunk.startswith("data:"):
|
|
try:
|
|
if len(data_json["choices"]) > 0:
|
|
text = data_json["choices"][0]["delta"].get("content", "")
|
|
if data_json["choices"][0].get("finish_reason", None):
|
|
is_finished = True
|
|
finish_reason = data_json["choices"][0]["finish_reason"]
|
|
print_verbose(
|
|
f"text: {text}; is_finished: {is_finished}; finish_reason: {finish_reason}"
|
|
)
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(
|
|
f"Unable to parse response. Original response: {chunk}"
|
|
)
|
|
elif "error" in chunk:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
else:
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
|
|
def handle_replicate_chunk(self, chunk):
|
|
try:
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = ""
|
|
if "output" in chunk:
|
|
text = chunk["output"]
|
|
if "status" in chunk:
|
|
if chunk["status"] == "succeeded":
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
elif chunk.get("error", None):
|
|
raise Exception(chunk["error"])
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
except:
|
|
raise ValueError(f"Unable to parse response. Original response: {chunk}")
|
|
|
|
def handle_openai_chat_completion_chunk(self, chunk):
|
|
try:
|
|
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
|
|
str_line = chunk
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
logprobs = None
|
|
original_chunk = None # this is used for function/tool calling
|
|
if len(str_line.choices) > 0:
|
|
if str_line.choices[0].delta.content is not None:
|
|
text = str_line.choices[0].delta.content
|
|
else: # function/tool calling chunk - when content is None. in this case we just return the original chunk from openai
|
|
original_chunk = str_line
|
|
if str_line.choices[0].finish_reason:
|
|
is_finished = True
|
|
finish_reason = str_line.choices[0].finish_reason
|
|
|
|
# checking for logprobs
|
|
if (
|
|
hasattr(str_line.choices[0], "logprobs")
|
|
and str_line.choices[0].logprobs is not None
|
|
):
|
|
logprobs = str_line.choices[0].logprobs
|
|
else:
|
|
logprobs = None
|
|
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
"logprobs": logprobs,
|
|
"original_chunk": str_line,
|
|
}
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
raise e
|
|
|
|
def handle_openai_text_completion_chunk(self, chunk):
|
|
try:
|
|
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
|
|
str_line = chunk
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
if "data: [DONE]" in str_line or self.sent_last_chunk == True:
|
|
raise StopIteration
|
|
elif str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
print_verbose(f"delta content: {data_json}")
|
|
text = data_json["choices"][0].get("text", "")
|
|
if data_json["choices"][0].get("finish_reason", None):
|
|
is_finished = True
|
|
finish_reason = data_json["choices"][0]["finish_reason"]
|
|
self.sent_last_chunk = True
|
|
print_verbose(
|
|
f"text: {text}; is_finished: {is_finished}; finish_reason: {finish_reason}"
|
|
)
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif "error" in str_line:
|
|
raise ValueError(
|
|
f"Unable to parse response. Original response: {str_line}"
|
|
)
|
|
else:
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def handle_baseten_chunk(self, chunk):
|
|
try:
|
|
chunk = chunk.decode("utf-8")
|
|
if len(chunk) > 0:
|
|
if chunk.startswith("data:"):
|
|
data_json = json.loads(chunk[5:])
|
|
if "token" in data_json and "text" in data_json["token"]:
|
|
return data_json["token"]["text"]
|
|
else:
|
|
return ""
|
|
data_json = json.loads(chunk)
|
|
if "model_output" in data_json:
|
|
if (
|
|
isinstance(data_json["model_output"], dict)
|
|
and "data" in data_json["model_output"]
|
|
and isinstance(data_json["model_output"]["data"], list)
|
|
):
|
|
return data_json["model_output"]["data"][0]
|
|
elif isinstance(data_json["model_output"], str):
|
|
return data_json["model_output"]
|
|
elif "completion" in data_json and isinstance(
|
|
data_json["completion"], str
|
|
):
|
|
return data_json["completion"]
|
|
else:
|
|
raise ValueError(
|
|
f"Unable to parse response. Original response: {chunk}"
|
|
)
|
|
else:
|
|
return ""
|
|
else:
|
|
return ""
|
|
except:
|
|
traceback.print_exc()
|
|
return ""
|
|
|
|
def handle_cloudlfare_stream(self, chunk):
|
|
try:
|
|
print_verbose(f"\nRaw OpenAI Chunk\n{chunk}\n")
|
|
chunk = chunk.decode("utf-8")
|
|
str_line = chunk
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
|
|
if "[DONE]" in chunk:
|
|
return {"text": text, "is_finished": True, "finish_reason": "stop"}
|
|
elif str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
print_verbose(f"delta content: {data_json}")
|
|
text = data_json["response"]
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
else:
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def handle_ollama_stream(self, chunk):
|
|
try:
|
|
if isinstance(chunk, dict):
|
|
json_chunk = chunk
|
|
else:
|
|
json_chunk = json.loads(chunk)
|
|
if "error" in json_chunk:
|
|
raise Exception(f"Ollama Error - {json_chunk}")
|
|
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
if json_chunk["done"] == True:
|
|
text = ""
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif json_chunk["response"]:
|
|
print_verbose(f"delta content: {json_chunk}")
|
|
text = json_chunk["response"]
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
else:
|
|
raise Exception(f"Ollama Error - {json_chunk}")
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def handle_ollama_chat_stream(self, chunk):
|
|
# for ollama_chat/ provider
|
|
try:
|
|
if isinstance(chunk, dict):
|
|
json_chunk = chunk
|
|
else:
|
|
json_chunk = json.loads(chunk)
|
|
if "error" in json_chunk:
|
|
raise Exception(f"Ollama Error - {json_chunk}")
|
|
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = None
|
|
if json_chunk["done"] == True:
|
|
text = ""
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
elif "message" in json_chunk:
|
|
print_verbose(f"delta content: {json_chunk}")
|
|
text = json_chunk["message"]["content"]
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
else:
|
|
raise Exception(f"Ollama Error - {json_chunk}")
|
|
except Exception as e:
|
|
raise e
|
|
|
|
def handle_bedrock_stream(self, chunk):
|
|
if hasattr(chunk, "get"):
|
|
chunk = chunk.get("chunk")
|
|
chunk_data = json.loads(chunk.get("bytes").decode())
|
|
else:
|
|
chunk_data = json.loads(chunk.decode())
|
|
if chunk_data:
|
|
text = ""
|
|
is_finished = False
|
|
finish_reason = ""
|
|
if "outputText" in chunk_data:
|
|
text = chunk_data["outputText"]
|
|
# ai21 mapping
|
|
if "ai21" in self.model: # fake ai21 streaming
|
|
text = chunk_data.get("completions")[0].get("data").get("text")
|
|
is_finished = True
|
|
finish_reason = "stop"
|
|
# anthropic mapping
|
|
elif "completion" in chunk_data:
|
|
text = chunk_data["completion"] # bedrock.anthropic
|
|
stop_reason = chunk_data.get("stop_reason", None)
|
|
if stop_reason != None:
|
|
is_finished = True
|
|
finish_reason = stop_reason
|
|
######## bedrock.cohere mappings ###############
|
|
# meta mapping
|
|
elif "generation" in chunk_data:
|
|
text = chunk_data["generation"] # bedrock.meta
|
|
# cohere mapping
|
|
elif "text" in chunk_data:
|
|
text = chunk_data["text"] # bedrock.cohere
|
|
# cohere mapping for finish reason
|
|
elif "finish_reason" in chunk_data:
|
|
finish_reason = chunk_data["finish_reason"]
|
|
is_finished = True
|
|
elif chunk_data.get("completionReason", None):
|
|
is_finished = True
|
|
finish_reason = chunk_data["completionReason"]
|
|
elif chunk.get("error", None):
|
|
raise Exception(chunk["error"])
|
|
return {
|
|
"text": text,
|
|
"is_finished": is_finished,
|
|
"finish_reason": finish_reason,
|
|
}
|
|
return ""
|
|
|
|
def chunk_creator(self, chunk):
|
|
model_response = ModelResponse(stream=True, model=self.model)
|
|
model_response.choices = [StreamingChoices()]
|
|
model_response.choices[0].finish_reason = None
|
|
response_obj = {}
|
|
try:
|
|
# return this for all models
|
|
completion_obj = {"content": ""}
|
|
if self.custom_llm_provider and self.custom_llm_provider == "anthropic":
|
|
response_obj = self.handle_anthropic_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.model == "replicate" or self.custom_llm_provider == "replicate":
|
|
response_obj = self.handle_replicate_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider and self.custom_llm_provider == "together_ai":
|
|
response_obj = self.handle_together_ai_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider and self.custom_llm_provider == "huggingface":
|
|
response_obj = self.handle_huggingface_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif (
|
|
self.custom_llm_provider and self.custom_llm_provider == "baseten"
|
|
): # baseten doesn't provide streaming
|
|
completion_obj["content"] = self.handle_baseten_chunk(chunk)
|
|
elif (
|
|
self.custom_llm_provider and self.custom_llm_provider == "ai21"
|
|
): # ai21 doesn't provide streaming
|
|
response_obj = self.handle_ai21_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider and self.custom_llm_provider == "maritalk":
|
|
response_obj = self.handle_maritalk_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider and self.custom_llm_provider == "vllm":
|
|
completion_obj["content"] = chunk[0].outputs[0].text
|
|
elif (
|
|
self.custom_llm_provider and self.custom_llm_provider == "aleph_alpha"
|
|
): # aleph alpha doesn't provide streaming
|
|
response_obj = self.handle_aleph_alpha_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider == "nlp_cloud":
|
|
try:
|
|
response_obj = self.handle_nlp_cloud_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
except Exception as e:
|
|
if self.sent_last_chunk:
|
|
raise e
|
|
else:
|
|
if self.sent_first_chunk is False:
|
|
raise Exception("An unknown error occurred with the stream")
|
|
model_response.choices[0].finish_reason = "stop"
|
|
self.sent_last_chunk = True
|
|
elif self.custom_llm_provider and self.custom_llm_provider == "vertex_ai":
|
|
try:
|
|
# print(chunk)
|
|
if hasattr(chunk, "text"):
|
|
# vertexAI chunks return
|
|
# MultiCandidateTextGenerationResponse(text=' ```python\n# This Python code says "Hi" 100 times.\n\n# Create', _prediction_response=Prediction(predictions=[{'candidates': [{'content': ' ```python\n# This Python code says "Hi" 100 times.\n\n# Create', 'author': '1'}], 'citationMetadata': [{'citations': None}], 'safetyAttributes': [{'blocked': False, 'scores': None, 'categories': None}]}], deployed_model_id='', model_version_id=None, model_resource_name=None, explanations=None), is_blocked=False, safety_attributes={}, candidates=[ ```python
|
|
# This Python code says "Hi" 100 times.
|
|
# Create])
|
|
completion_obj["content"] = chunk.text
|
|
else:
|
|
completion_obj["content"] = str(chunk)
|
|
except StopIteration as e:
|
|
if self.sent_last_chunk:
|
|
raise e
|
|
else:
|
|
model_response.choices[0].finish_reason = "stop"
|
|
self.sent_last_chunk = True
|
|
elif self.custom_llm_provider == "cohere":
|
|
response_obj = self.handle_cohere_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider == "bedrock":
|
|
if self.sent_last_chunk:
|
|
raise StopIteration
|
|
response_obj = self.handle_bedrock_stream(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
self.sent_last_chunk = True
|
|
elif self.custom_llm_provider == "sagemaker":
|
|
print_verbose(f"ENTERS SAGEMAKER STREAMING")
|
|
if len(self.completion_stream) == 0:
|
|
if self.sent_last_chunk:
|
|
raise StopIteration
|
|
else:
|
|
model_response.choices[0].finish_reason = "stop"
|
|
self.sent_last_chunk = True
|
|
new_chunk = self.completion_stream
|
|
print_verbose(f"sagemaker chunk: {new_chunk}")
|
|
completion_obj["content"] = new_chunk
|
|
self.completion_stream = self.completion_stream[
|
|
len(self.completion_stream) :
|
|
]
|
|
elif self.custom_llm_provider == "petals":
|
|
if len(self.completion_stream) == 0:
|
|
if self.sent_last_chunk:
|
|
raise StopIteration
|
|
else:
|
|
model_response.choices[0].finish_reason = "stop"
|
|
self.sent_last_chunk = True
|
|
chunk_size = 30
|
|
new_chunk = self.completion_stream[:chunk_size]
|
|
completion_obj["content"] = new_chunk
|
|
self.completion_stream = self.completion_stream[chunk_size:]
|
|
time.sleep(0.05)
|
|
elif self.custom_llm_provider == "palm":
|
|
# fake streaming
|
|
response_obj = {}
|
|
if len(self.completion_stream) == 0:
|
|
if self.sent_last_chunk:
|
|
raise StopIteration
|
|
else:
|
|
model_response.choices[0].finish_reason = "stop"
|
|
self.sent_last_chunk = True
|
|
chunk_size = 30
|
|
new_chunk = self.completion_stream[:chunk_size]
|
|
completion_obj["content"] = new_chunk
|
|
self.completion_stream = self.completion_stream[chunk_size:]
|
|
time.sleep(0.05)
|
|
elif self.custom_llm_provider == "ollama":
|
|
response_obj = self.handle_ollama_stream(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
print_verbose(f"completion obj content: {completion_obj['content']}")
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider == "ollama_chat":
|
|
response_obj = self.handle_ollama_chat_stream(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
print_verbose(f"completion obj content: {completion_obj['content']}")
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider == "cloudflare":
|
|
response_obj = self.handle_cloudlfare_stream(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
print_verbose(f"completion obj content: {completion_obj['content']}")
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
elif self.custom_llm_provider == "text-completion-openai":
|
|
response_obj = self.handle_openai_text_completion_chunk(chunk)
|
|
completion_obj["content"] = response_obj["text"]
|
|
print_verbose(f"completion obj content: {completion_obj['content']}")
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
else: # openai / azure chat model
|
|
if self.custom_llm_provider == "azure":
|
|
if hasattr(chunk, "model"):
|
|
# for azure, we need to pass the model from the orignal chunk
|
|
self.model = chunk.model
|
|
response_obj = self.handle_openai_chat_completion_chunk(chunk)
|
|
if response_obj == None:
|
|
return
|
|
completion_obj["content"] = response_obj["text"]
|
|
print_verbose(f"completion obj content: {completion_obj['content']}")
|
|
if response_obj["is_finished"]:
|
|
model_response.choices[0].finish_reason = response_obj[
|
|
"finish_reason"
|
|
]
|
|
if response_obj["logprobs"] is not None:
|
|
model_response.choices[0].logprobs = response_obj["logprobs"]
|
|
|
|
model_response.model = self.model
|
|
print_verbose(
|
|
f"model_response: {model_response}; completion_obj: {completion_obj}"
|
|
)
|
|
print_verbose(
|
|
f"model_response finish reason 3: {model_response.choices[0].finish_reason}"
|
|
)
|
|
if (
|
|
len(completion_obj["content"]) > 0
|
|
): # cannot set content of an OpenAI Object to be an empty string
|
|
hold, model_response_str = self.check_special_tokens(
|
|
chunk=completion_obj["content"],
|
|
finish_reason=model_response.choices[0].finish_reason,
|
|
) # filter out bos/eos tokens from openai-compatible hf endpoints
|
|
print_verbose(
|
|
f"hold - {hold}, model_response_str - {model_response_str}"
|
|
)
|
|
if hold is False:
|
|
## check if openai/azure chunk
|
|
original_chunk = response_obj.get("original_chunk", None)
|
|
if original_chunk:
|
|
model_response.id = original_chunk.id
|
|
if len(original_chunk.choices) > 0:
|
|
try:
|
|
delta = dict(original_chunk.choices[0].delta)
|
|
model_response.choices[0].delta = Delta(**delta)
|
|
except Exception as e:
|
|
model_response.choices[0].delta = Delta()
|
|
else:
|
|
return
|
|
model_response.system_fingerprint = (
|
|
original_chunk.system_fingerprint
|
|
)
|
|
if self.sent_first_chunk == False:
|
|
model_response.choices[0].delta["role"] = "assistant"
|
|
self.sent_first_chunk = True
|
|
else:
|
|
## else
|
|
completion_obj["content"] = model_response_str
|
|
if self.sent_first_chunk == False:
|
|
completion_obj["role"] = "assistant"
|
|
self.sent_first_chunk = True
|
|
model_response.choices[0].delta = Delta(**completion_obj)
|
|
print_verbose(f"model_response: {model_response}")
|
|
return model_response
|
|
else:
|
|
return
|
|
elif model_response.choices[0].finish_reason:
|
|
# flush any remaining holding chunk
|
|
if len(self.holding_chunk) > 0:
|
|
if model_response.choices[0].delta.content is None:
|
|
model_response.choices[0].delta.content = self.holding_chunk
|
|
else:
|
|
model_response.choices[0].delta.content = (
|
|
self.holding_chunk + model_response.choices[0].delta.content
|
|
)
|
|
self.holding_chunk = ""
|
|
model_response.choices[0].finish_reason = map_finish_reason(
|
|
model_response.choices[0].finish_reason
|
|
) # ensure consistent output to openai
|
|
return model_response
|
|
elif (
|
|
response_obj is not None
|
|
and response_obj.get("original_chunk", None) is not None
|
|
): # function / tool calling branch - only set for openai/azure compatible endpoints
|
|
# enter this branch when no content has been passed in response
|
|
original_chunk = response_obj.get("original_chunk", None)
|
|
model_response.id = original_chunk.id
|
|
if len(original_chunk.choices) > 0:
|
|
if (
|
|
original_chunk.choices[0].delta.function_call is not None
|
|
or original_chunk.choices[0].delta.tool_calls is not None
|
|
):
|
|
try:
|
|
delta = dict(original_chunk.choices[0].delta)
|
|
model_response.choices[0].delta = Delta(**delta)
|
|
except Exception as e:
|
|
model_response.choices[0].delta = Delta()
|
|
else:
|
|
return
|
|
else:
|
|
return
|
|
model_response.system_fingerprint = original_chunk.system_fingerprint
|
|
if self.sent_first_chunk == False:
|
|
model_response.choices[0].delta["role"] = "assistant"
|
|
self.sent_first_chunk = True
|
|
return model_response
|
|
else:
|
|
return
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except Exception as e:
|
|
traceback_exception = traceback.format_exc()
|
|
e.message = str(e)
|
|
raise exception_type(
|
|
model=self.model,
|
|
custom_llm_provider=self.custom_llm_provider,
|
|
original_exception=e,
|
|
)
|
|
|
|
## needs to handle the empty string case (even starting chunk can be an empty string)
|
|
def __next__(self):
|
|
try:
|
|
while True:
|
|
if isinstance(self.completion_stream, str) or isinstance(
|
|
self.completion_stream, bytes
|
|
):
|
|
chunk = self.completion_stream
|
|
else:
|
|
chunk = next(self.completion_stream)
|
|
print_verbose(f"value of chunk: {chunk} ")
|
|
if chunk is not None and chunk != b"":
|
|
print_verbose(f"PROCESSED CHUNK PRE CHUNK CREATOR: {chunk}")
|
|
response = self.chunk_creator(chunk=chunk)
|
|
print_verbose(f"PROCESSED CHUNK POST CHUNK CREATOR: {response}")
|
|
if response is None:
|
|
continue
|
|
## LOGGING
|
|
threading.Thread(
|
|
target=self.logging_obj.success_handler, args=(response,)
|
|
).start() # log response
|
|
# RETURN RESULT
|
|
return response
|
|
except StopIteration:
|
|
raise # Re-raise StopIteration
|
|
except Exception as e:
|
|
traceback_exception = traceback.format_exc()
|
|
# LOG FAILURE - handle streaming failure logging in the _next_ object, remove `handle_failure` once it's deprecated
|
|
threading.Thread(
|
|
target=self.logging_obj.failure_handler, args=(e, traceback_exception)
|
|
).start()
|
|
raise e
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
if (
|
|
self.custom_llm_provider == "openai"
|
|
or self.custom_llm_provider == "azure"
|
|
or self.custom_llm_provider == "custom_openai"
|
|
or self.custom_llm_provider == "text-completion-openai"
|
|
or self.custom_llm_provider == "huggingface"
|
|
or self.custom_llm_provider == "ollama"
|
|
or self.custom_llm_provider == "ollama_chat"
|
|
or self.custom_llm_provider == "vertex_ai"
|
|
):
|
|
print_verbose(f"INSIDE ASYNC STREAMING!!!")
|
|
print_verbose(
|
|
f"value of async completion stream: {self.completion_stream}"
|
|
)
|
|
async for chunk in self.completion_stream:
|
|
print_verbose(f"value of async chunk: {chunk}")
|
|
if chunk == "None" or chunk is None:
|
|
raise Exception
|
|
|
|
# chunk_creator() does logging/stream chunk building. We need to let it know its being called in_async_func, so we don't double add chunks.
|
|
# __anext__ also calls async_success_handler, which does logging
|
|
print_verbose(f"PROCESSED ASYNC CHUNK PRE CHUNK CREATOR: {chunk}")
|
|
processed_chunk = self.chunk_creator(chunk=chunk)
|
|
print_verbose(
|
|
f"PROCESSED ASYNC CHUNK POST CHUNK CREATOR: {processed_chunk}"
|
|
)
|
|
if processed_chunk is None:
|
|
continue
|
|
## LOGGING
|
|
threading.Thread(
|
|
target=self.logging_obj.success_handler, args=(processed_chunk,)
|
|
).start() # log response
|
|
asyncio.create_task(
|
|
self.logging_obj.async_success_handler(
|
|
processed_chunk,
|
|
)
|
|
)
|
|
return processed_chunk
|
|
raise StopAsyncIteration
|
|
else: # temporary patch for non-aiohttp async calls
|
|
# example - boto3 bedrock llms
|
|
processed_chunk = next(self)
|
|
asyncio.create_task(
|
|
self.logging_obj.async_success_handler(
|
|
processed_chunk,
|
|
)
|
|
)
|
|
return processed_chunk
|
|
except StopAsyncIteration:
|
|
raise
|
|
except StopIteration:
|
|
raise StopAsyncIteration # Re-raise StopIteration
|
|
except Exception as e:
|
|
traceback_exception = traceback.format_exc()
|
|
# Handle any exceptions that might occur during streaming
|
|
asyncio.create_task(
|
|
self.logging_obj.async_failure_handler(e, traceback_exception)
|
|
)
|
|
raise e
|
|
|
|
|
|
class TextCompletionStreamWrapper:
|
|
def __init__(self, completion_stream, model):
|
|
self.completion_stream = completion_stream
|
|
self.model = model
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
def convert_to_text_completion_object(self, chunk: ModelResponse):
|
|
try:
|
|
response = TextCompletionResponse()
|
|
response["id"] = chunk.get("id", None)
|
|
response["object"] = "text_completion"
|
|
response["created"] = chunk.get("created", None)
|
|
response["model"] = chunk.get("model", None)
|
|
text_choices = TextChoices()
|
|
if isinstance(
|
|
chunk, Choices
|
|
): # chunk should always be of type StreamingChoices
|
|
raise Exception
|
|
text_choices["text"] = chunk["choices"][0]["delta"]["content"]
|
|
text_choices["index"] = chunk["choices"][0]["index"]
|
|
text_choices["finish_reason"] = chunk["choices"][0]["finish_reason"]
|
|
response["choices"] = [text_choices]
|
|
return response
|
|
except Exception as e:
|
|
raise Exception(
|
|
f"Error occurred converting to text completion object - chunk: {chunk}; Error: {str(e)}"
|
|
)
|
|
|
|
def __next__(self):
|
|
# model_response = ModelResponse(stream=True, model=self.model)
|
|
response = TextCompletionResponse()
|
|
try:
|
|
for chunk in self.completion_stream:
|
|
if chunk == "None" or chunk is None:
|
|
raise Exception
|
|
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
|
|
return processed_chunk
|
|
raise StopIteration
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except Exception as e:
|
|
print(f"got exception {e}") # noqa
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
async for chunk in self.completion_stream:
|
|
if chunk == "None" or chunk is None:
|
|
raise Exception
|
|
processed_chunk = self.convert_to_text_completion_object(chunk=chunk)
|
|
return processed_chunk
|
|
raise StopIteration
|
|
except StopIteration:
|
|
raise StopAsyncIteration
|
|
|
|
|
|
def mock_completion_streaming_obj(model_response, mock_response, model):
|
|
for i in range(0, len(mock_response), 3):
|
|
completion_obj = {"role": "assistant", "content": mock_response[i : i + 3]}
|
|
model_response.choices[0].delta = completion_obj
|
|
yield model_response
|
|
|
|
|
|
########## Reading Config File ############################
|
|
def read_config_args(config_path) -> dict:
|
|
try:
|
|
import os
|
|
|
|
current_path = os.getcwd()
|
|
with open(config_path, "r") as config_file:
|
|
config = json.load(config_file)
|
|
|
|
# read keys/ values from config file and return them
|
|
return config
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
########## experimental completion variants ############################
|
|
|
|
|
|
def completion_with_config(config: Union[dict, str], **kwargs):
|
|
"""
|
|
Generate a litellm.completion() using a config dict and all supported completion args
|
|
|
|
Example config;
|
|
config = {
|
|
"default_fallback_models": # [Optional] List of model names to try if a call fails
|
|
"available_models": # [Optional] List of all possible models you could call
|
|
"adapt_to_prompt_size": # [Optional] True/False - if you want to select model based on prompt size (will pick from available_models)
|
|
"model": {
|
|
"model-name": {
|
|
"needs_moderation": # [Optional] True/False - if you want to call openai moderations endpoint before making completion call. Will raise exception, if flagged.
|
|
"error_handling": {
|
|
"error-type": { # One of the errors listed here - https://docs.litellm.ai/docs/exception_mapping#custom-mapping-list
|
|
"fallback_model": "" # str, name of the model it should try instead, when that error occurs
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Parameters:
|
|
config (Union[dict, str]): A configuration for litellm
|
|
**kwargs: Additional keyword arguments for litellm.completion
|
|
|
|
Returns:
|
|
litellm.ModelResponse: A ModelResponse with the generated completion
|
|
|
|
"""
|
|
if config is not None:
|
|
if isinstance(config, str):
|
|
config = read_config_args(config)
|
|
elif isinstance(config, dict):
|
|
config = config
|
|
else:
|
|
raise Exception("Config path must be a string or a dictionary.")
|
|
else:
|
|
raise Exception("Config path not passed in.")
|
|
|
|
if config is None:
|
|
raise Exception("No completion config in the config file")
|
|
|
|
models_with_config = config["model"].keys()
|
|
model = kwargs["model"]
|
|
messages = kwargs["messages"]
|
|
|
|
## completion config
|
|
fallback_models = config.get("default_fallback_models", None)
|
|
available_models = config.get("available_models", None)
|
|
adapt_to_prompt_size = config.get("adapt_to_prompt_size", False)
|
|
trim_messages_flag = config.get("trim_messages", False)
|
|
prompt_larger_than_model = False
|
|
max_model = model
|
|
try:
|
|
max_tokens = litellm.get_max_tokens(model)["max_tokens"]
|
|
except:
|
|
max_tokens = 2048 # assume curr model's max window is 2048 tokens
|
|
if adapt_to_prompt_size:
|
|
## Pick model based on token window
|
|
prompt_tokens = litellm.token_counter(
|
|
model="gpt-3.5-turbo",
|
|
text="".join(message["content"] for message in messages),
|
|
)
|
|
try:
|
|
curr_max_tokens = litellm.get_max_tokens(model)["max_tokens"]
|
|
except:
|
|
curr_max_tokens = 2048
|
|
if curr_max_tokens < prompt_tokens:
|
|
prompt_larger_than_model = True
|
|
for available_model in available_models:
|
|
try:
|
|
curr_max_tokens = litellm.get_max_tokens(available_model)[
|
|
"max_tokens"
|
|
]
|
|
if curr_max_tokens > max_tokens:
|
|
max_tokens = curr_max_tokens
|
|
max_model = available_model
|
|
if curr_max_tokens > prompt_tokens:
|
|
model = available_model
|
|
prompt_larger_than_model = False
|
|
except:
|
|
continue
|
|
if prompt_larger_than_model:
|
|
messages = trim_messages(messages=messages, model=max_model)
|
|
kwargs["messages"] = messages
|
|
|
|
kwargs["model"] = model
|
|
try:
|
|
if model in models_with_config:
|
|
## Moderation check
|
|
if config["model"][model].get("needs_moderation"):
|
|
input = " ".join(message["content"] for message in messages)
|
|
response = litellm.moderation(input=input)
|
|
flagged = response["results"][0]["flagged"]
|
|
if flagged:
|
|
raise Exception("This response was flagged as inappropriate")
|
|
|
|
## Model-specific Error Handling
|
|
error_handling = None
|
|
if config["model"][model].get("error_handling"):
|
|
error_handling = config["model"][model]["error_handling"]
|
|
|
|
try:
|
|
response = litellm.completion(**kwargs)
|
|
return response
|
|
except Exception as e:
|
|
exception_name = type(e).__name__
|
|
fallback_model = None
|
|
if error_handling and exception_name in error_handling:
|
|
error_handler = error_handling[exception_name]
|
|
# either switch model or api key
|
|
fallback_model = error_handler.get("fallback_model", None)
|
|
if fallback_model:
|
|
kwargs["model"] = fallback_model
|
|
return litellm.completion(**kwargs)
|
|
raise e
|
|
else:
|
|
return litellm.completion(**kwargs)
|
|
except Exception as e:
|
|
if fallback_models:
|
|
model = fallback_models.pop(0)
|
|
return completion_with_fallbacks(
|
|
model=model, messages=messages, fallbacks=fallback_models
|
|
)
|
|
raise e
|
|
|
|
|
|
def completion_with_fallbacks(**kwargs):
|
|
nested_kwargs = kwargs.pop("kwargs", {})
|
|
response = None
|
|
rate_limited_models = set()
|
|
model_expiration_times = {}
|
|
start_time = time.time()
|
|
original_model = kwargs["model"]
|
|
fallbacks = [kwargs["model"]] + nested_kwargs.get("fallbacks", [])
|
|
if "fallbacks" in nested_kwargs:
|
|
del nested_kwargs["fallbacks"] # remove fallbacks so it's not recursive
|
|
litellm_call_id = str(uuid.uuid4())
|
|
|
|
# max time to process a request with fallbacks: default 45s
|
|
while response == None and time.time() - start_time < 45:
|
|
for model in fallbacks:
|
|
# loop thru all models
|
|
try:
|
|
# check if it's dict or new model string
|
|
if isinstance(
|
|
model, dict
|
|
): # completion(model="gpt-4", fallbacks=[{"api_key": "", "api_base": ""}, {"api_key": "", "api_base": ""}])
|
|
kwargs["api_key"] = model.get("api_key", None)
|
|
kwargs["api_base"] = model.get("api_base", None)
|
|
model = model.get("model", original_model)
|
|
elif (
|
|
model in rate_limited_models
|
|
): # check if model is currently cooling down
|
|
if (
|
|
model_expiration_times.get(model)
|
|
and time.time() >= model_expiration_times[model]
|
|
):
|
|
rate_limited_models.remove(
|
|
model
|
|
) # check if it's been 60s of cool down and remove model
|
|
else:
|
|
continue # skip model
|
|
|
|
# delete model from kwargs if it exists
|
|
if kwargs.get("model"):
|
|
del kwargs["model"]
|
|
|
|
print_verbose(f"trying to make completion call with model: {model}")
|
|
kwargs["litellm_call_id"] = litellm_call_id
|
|
kwargs = {
|
|
**kwargs,
|
|
**nested_kwargs,
|
|
} # combine the openai + litellm params at the same level
|
|
response = litellm.completion(**kwargs, model=model)
|
|
print_verbose(f"response: {response}")
|
|
if response != None:
|
|
return response
|
|
|
|
except Exception as e:
|
|
print_verbose(e)
|
|
rate_limited_models.add(model)
|
|
model_expiration_times[model] = (
|
|
time.time() + 60
|
|
) # cool down this selected model
|
|
pass
|
|
return response
|
|
|
|
|
|
def process_system_message(system_message, max_tokens, model):
|
|
system_message_event = {"role": "system", "content": system_message}
|
|
system_message_tokens = get_token_count([system_message_event], model)
|
|
|
|
if system_message_tokens > max_tokens:
|
|
print_verbose(
|
|
"`tokentrimmer`: Warning, system message exceeds token limit. Trimming..."
|
|
)
|
|
# shorten system message to fit within max_tokens
|
|
new_system_message = shorten_message_to_fit_limit(
|
|
system_message_event, max_tokens, model
|
|
)
|
|
system_message_tokens = get_token_count([new_system_message], model)
|
|
|
|
return system_message_event, max_tokens - system_message_tokens
|
|
|
|
|
|
def process_messages(messages, max_tokens, model):
|
|
# Process messages from older to more recent
|
|
messages = messages[::-1]
|
|
final_messages = []
|
|
|
|
for message in messages:
|
|
used_tokens = get_token_count(final_messages, model)
|
|
available_tokens = max_tokens - used_tokens
|
|
if available_tokens <= 3:
|
|
break
|
|
final_messages = attempt_message_addition(
|
|
final_messages=final_messages,
|
|
message=message,
|
|
available_tokens=available_tokens,
|
|
max_tokens=max_tokens,
|
|
model=model,
|
|
)
|
|
|
|
return final_messages
|
|
|
|
|
|
def attempt_message_addition(
|
|
final_messages, message, available_tokens, max_tokens, model
|
|
):
|
|
temp_messages = [message] + final_messages
|
|
temp_message_tokens = get_token_count(messages=temp_messages, model=model)
|
|
|
|
if temp_message_tokens <= max_tokens:
|
|
return temp_messages
|
|
|
|
# if temp_message_tokens > max_tokens, try shortening temp_messages
|
|
elif "function_call" not in message:
|
|
# fit updated_message to be within temp_message_tokens - max_tokens (aka the amount temp_message_tokens is greate than max_tokens)
|
|
updated_message = shorten_message_to_fit_limit(message, available_tokens, model)
|
|
if can_add_message(updated_message, final_messages, max_tokens, model):
|
|
return [updated_message] + final_messages
|
|
|
|
return final_messages
|
|
|
|
|
|
def can_add_message(message, messages, max_tokens, model):
|
|
if get_token_count(messages + [message], model) <= max_tokens:
|
|
return True
|
|
return False
|
|
|
|
|
|
def get_token_count(messages, model):
|
|
return token_counter(model=model, messages=messages)
|
|
|
|
|
|
def shorten_message_to_fit_limit(message, tokens_needed, model):
|
|
"""
|
|
Shorten a message to fit within a token limit by removing characters from the middle.
|
|
"""
|
|
|
|
# For OpenAI models, even blank messages cost 7 token,
|
|
# and if the buffer is less than 3, the while loop will never end,
|
|
# hence the value 10.
|
|
if "gpt" in model and tokens_needed <= 10:
|
|
return message
|
|
|
|
content = message["content"]
|
|
|
|
while True:
|
|
total_tokens = get_token_count([message], model)
|
|
|
|
if total_tokens <= tokens_needed:
|
|
break
|
|
|
|
ratio = (tokens_needed) / total_tokens
|
|
|
|
new_length = int(len(content) * ratio) - 1
|
|
new_length = max(0, new_length)
|
|
|
|
half_length = new_length // 2
|
|
left_half = content[:half_length]
|
|
right_half = content[-half_length:]
|
|
|
|
trimmed_content = left_half + ".." + right_half
|
|
message["content"] = trimmed_content
|
|
content = trimmed_content
|
|
|
|
return message
|
|
|
|
|
|
# LiteLLM token trimmer
|
|
# this code is borrowed from https://github.com/KillianLucas/tokentrim/blob/main/tokentrim/tokentrim.py
|
|
# Credits for this code go to Killian Lucas
|
|
def trim_messages(
|
|
messages,
|
|
model: Optional[str] = None,
|
|
trim_ratio: float = 0.75,
|
|
return_response_tokens: bool = False,
|
|
max_tokens=None,
|
|
):
|
|
"""
|
|
Trim a list of messages to fit within a model's token limit.
|
|
|
|
Args:
|
|
messages: Input messages to be trimmed. Each message is a dictionary with 'role' and 'content'.
|
|
model: The LiteLLM model being used (determines the token limit).
|
|
trim_ratio: Target ratio of tokens to use after trimming. Default is 0.75, meaning it will trim messages so they use about 75% of the model's token limit.
|
|
return_response_tokens: If True, also return the number of tokens left available for the response after trimming.
|
|
max_tokens: Instead of specifying a model or trim_ratio, you can specify this directly.
|
|
|
|
Returns:
|
|
Trimmed messages and optionally the number of tokens available for response.
|
|
"""
|
|
# Initialize max_tokens
|
|
# if users pass in max tokens, trim to this amount
|
|
messages = copy.deepcopy(messages)
|
|
try:
|
|
print_verbose(f"trimming messages")
|
|
if max_tokens == None:
|
|
# Check if model is valid
|
|
if model in litellm.model_cost:
|
|
max_tokens_for_model = litellm.model_cost[model]["max_tokens"]
|
|
max_tokens = int(max_tokens_for_model * trim_ratio)
|
|
else:
|
|
# if user did not specify max tokens
|
|
# or passed an llm litellm does not know
|
|
# do nothing, just return messages
|
|
return
|
|
|
|
system_message = ""
|
|
for message in messages:
|
|
if message["role"] == "system":
|
|
system_message += "\n" if system_message else ""
|
|
system_message += message["content"]
|
|
|
|
current_tokens = token_counter(model=model, messages=messages)
|
|
print_verbose(f"Current tokens: {current_tokens}, max tokens: {max_tokens}")
|
|
|
|
# Do nothing if current tokens under messages
|
|
if current_tokens < max_tokens:
|
|
return messages
|
|
|
|
#### Trimming messages if current_tokens > max_tokens
|
|
print_verbose(
|
|
f"Need to trim input messages: {messages}, current_tokens{current_tokens}, max_tokens: {max_tokens}"
|
|
)
|
|
if system_message:
|
|
system_message_event, max_tokens = process_system_message(
|
|
system_message=system_message, max_tokens=max_tokens, model=model
|
|
)
|
|
|
|
if max_tokens == 0: # the system messages are too long
|
|
return [system_message_event]
|
|
|
|
# Since all system messages are combined and trimmed to fit the max_tokens,
|
|
# we remove all system messages from the messages list
|
|
messages = [message for message in messages if message["role"] != "system"]
|
|
|
|
final_messages = process_messages(
|
|
messages=messages, max_tokens=max_tokens, model=model
|
|
)
|
|
|
|
# Add system message to the beginning of the final messages
|
|
if system_message:
|
|
final_messages = [system_message_event] + final_messages
|
|
|
|
if (
|
|
return_response_tokens
|
|
): # if user wants token count with new trimmed messages
|
|
response_tokens = max_tokens - get_token_count(final_messages, model)
|
|
return final_messages, response_tokens
|
|
return final_messages
|
|
except Exception as e: # [NON-Blocking, if error occurs just return final_messages
|
|
print_verbose(f"Got exception while token trimming{e}")
|
|
return messages
|
|
|
|
|
|
def get_valid_models():
|
|
"""
|
|
Returns a list of valid LLMs based on the set environment variables
|
|
|
|
Args:
|
|
None
|
|
|
|
Returns:
|
|
A list of valid LLMs
|
|
"""
|
|
try:
|
|
# get keys set in .env
|
|
environ_keys = os.environ.keys()
|
|
valid_providers = []
|
|
# for all valid providers, make a list of supported llms
|
|
valid_models = []
|
|
|
|
for provider in litellm.provider_list:
|
|
# edge case litellm has together_ai as a provider, it should be togetherai
|
|
provider = provider.replace("_", "")
|
|
|
|
# litellm standardizes expected provider keys to
|
|
# PROVIDER_API_KEY. Example: OPENAI_API_KEY, COHERE_API_KEY
|
|
expected_provider_key = f"{provider.upper()}_API_KEY"
|
|
if expected_provider_key in environ_keys:
|
|
# key is set
|
|
valid_providers.append(provider)
|
|
|
|
for provider in valid_providers:
|
|
if provider == "azure":
|
|
valid_models.append("Azure-LLM")
|
|
else:
|
|
models_for_provider = litellm.models_by_provider.get(provider, [])
|
|
valid_models.extend(models_for_provider)
|
|
return valid_models
|
|
except:
|
|
return [] # NON-Blocking
|
|
|
|
|
|
# used for litellm.text_completion() to transform HF logprobs to OpenAI.Completion() format
|
|
def transform_logprobs(hf_response):
|
|
# Initialize an empty list for the transformed logprobs
|
|
transformed_logprobs = []
|
|
|
|
# For each Hugging Face response, transform the logprobs
|
|
for response in hf_response:
|
|
# Extract the relevant information from the response
|
|
response_details = response["details"]
|
|
top_tokens = response_details.get("top_tokens", {})
|
|
|
|
# Initialize an empty list for the token information
|
|
token_info = {
|
|
"tokens": [],
|
|
"token_logprobs": [],
|
|
"text_offset": [],
|
|
"top_logprobs": [],
|
|
}
|
|
|
|
for i, token in enumerate(response_details["prefill"]):
|
|
# Extract the text of the token
|
|
token_text = token["text"]
|
|
|
|
# Extract the logprob of the token
|
|
token_logprob = token["logprob"]
|
|
|
|
# Add the token information to the 'token_info' list
|
|
token_info["tokens"].append(token_text)
|
|
token_info["token_logprobs"].append(token_logprob)
|
|
|
|
# stub this to work with llm eval harness
|
|
top_alt_tokens = {"": -1, "": -2, "": -3}
|
|
token_info["top_logprobs"].append(top_alt_tokens)
|
|
|
|
# For each element in the 'tokens' list, extract the relevant information
|
|
for i, token in enumerate(response_details["tokens"]):
|
|
# Extract the text of the token
|
|
token_text = token["text"]
|
|
|
|
# Extract the logprob of the token
|
|
token_logprob = token["logprob"]
|
|
|
|
top_alt_tokens = {}
|
|
temp_top_logprobs = []
|
|
if top_tokens != {}:
|
|
temp_top_logprobs = top_tokens[i]
|
|
|
|
# top_alt_tokens should look like this: { "alternative_1": -1, "alternative_2": -2, "alternative_3": -3 }
|
|
for elem in temp_top_logprobs:
|
|
text = elem["text"]
|
|
logprob = elem["logprob"]
|
|
top_alt_tokens[text] = logprob
|
|
|
|
# Add the token information to the 'token_info' list
|
|
token_info["tokens"].append(token_text)
|
|
token_info["token_logprobs"].append(token_logprob)
|
|
token_info["top_logprobs"].append(top_alt_tokens)
|
|
|
|
# Add the text offset of the token
|
|
# This is computed as the sum of the lengths of all previous tokens
|
|
token_info["text_offset"].append(
|
|
sum(len(t["text"]) for t in response_details["tokens"][:i])
|
|
)
|
|
|
|
# Add the 'token_info' list to the 'transformed_logprobs' list
|
|
transformed_logprobs = token_info
|
|
|
|
return transformed_logprobs
|