forked from phoenix/litellm-mirror
.. | ||
main.py | ||
readme.md |
🚅 LiteLLM - A/B Testing LLMs in Production
Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, Azure OpenAI etc.]
100+ Supported Models | Docs | Demo Website
LiteLLM allows you to call 100+ LLMs using completion This template server allows you to define LLMs with their A/B test ratios
llm_dict = {
"gpt-4": 0.2,
"together_ai/togethercomputer/llama-2-70b-chat": 0.4,
"claude-2": 0.2,
"claude-1.2": 0.2
}
All models defined can be called with the same Input/Output format using litellm completion
from litellm import completion
# SET API KEYS in .env
# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)
# cohere call
response = completion(model="command-nightly", messages=messages)
# anthropic
response = completion(model="claude-2", messages=messages)
After calling completion()
costs and latency can be viewed on the LiteLLM Client UI
LiteLLM Client UI
Using LiteLLM A/B Testing Server
Installation
pip install litellm
Stable version
pip install litellm==0.1.424
Clone LiteLLM Git Repo
git clone https://github.com/BerriAI/litellm/
Navigate to LiteLLM-A/B Test Server
cd litellm/cookbook/llm-ab-test-server
Run the Server
python3 main.py
Set your LLM Configs
Set your LLMs and LLM weights you want to run A/B testing with
support / talk with founders
- Schedule Demo 👋
- Community Discord 💭
- Our numbers 📞 +1 (770) 8783-106 / +1 (412) 618-6238
- Our emails ✉️ ishaan@berri.ai / krrish@berri.ai
why did we build this
- Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere