litellm/litellm/llms/groq/chat/handler.py
Krish Dholakia 0b30e212da
LiteLLM Minor Fixes & Improvements (09/27/2024) (#5938)
* fix(langfuse.py): prevent double logging requester metadata

Fixes https://github.com/BerriAI/litellm/issues/5935

* build(model_prices_and_context_window.json): add mistral pixtral cost tracking

Closes https://github.com/BerriAI/litellm/issues/5837

* handle streaming for azure ai studio error

* [Perf Proxy] parallel request limiter - use one cache update call (#5932)

* fix parallel request limiter - use one cache update call

* ci/cd run again

* run ci/cd again

* use docker username password

* fix config.yml

* fix config

* fix config

* fix config.yml

* ci/cd run again

* use correct typing for batch set cache

* fix async_set_cache_pipeline

* fix only check user id tpm / rpm limits when limits set

* fix test_openai_azure_embedding_with_oidc_and_cf

* fix(groq/chat/transformation.py): Fixes https://github.com/BerriAI/litellm/issues/5839

* feat(anthropic/chat.py): return 'retry-after' headers from anthropic

Fixes https://github.com/BerriAI/litellm/issues/4387

* feat: raise validation error if message has tool calls without passing `tools` param for anthropic/bedrock

Closes https://github.com/BerriAI/litellm/issues/5747

* [Feature]#5940, add max_workers parameter for the batch_completion (#5947)

* handle streaming for azure ai studio error

* bump: version 1.48.2 → 1.48.3

* docs(data_security.md): add legal/compliance faq's

Make it easier for companies to use litellm

* docs: resolve imports

* [Feature]#5940, add max_workers parameter for the batch_completion method

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Krrish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: josearangos <josearangos@Joses-MacBook-Pro.local>

* fix(converse_transformation.py): fix default message value

* fix(utils.py): fix get_model_info to handle finetuned models

Fixes issue for standard logging payloads, where model_map_value was null for finetuned openai models

* fix(litellm_pre_call_utils.py): add debug statement for data sent after updating with team/key callbacks

* fix: fix linting errors

* fix(anthropic/chat/handler.py): fix cache creation input tokens

* fix(exception_mapping_utils.py): fix missing imports

* fix(anthropic/chat/handler.py): fix usage block translation

* test: fix test

* test: fix tests

* style(types/utils.py): trigger new build

* test: fix test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Jose Alberto Arango Sanchez <jose.arangos@udea.edu.co>
Co-authored-by: josearangos <josearangos@Joses-MacBook-Pro.local>
2024-09-27 22:52:57 -07:00

60 lines
1.7 KiB
Python

"""
Handles the chat completion request for groq
"""
from typing import Any, Callable, Optional, Union
from httpx._config import Timeout
from litellm.utils import ModelResponse
from ...groq.chat.transformation import GroqChatConfig
from ...OpenAI.openai import OpenAIChatCompletion
class GroqChatCompletion(OpenAIChatCompletion):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def completion(
self,
model_response: ModelResponse,
timeout: Union[float, Timeout],
optional_params: dict,
logging_obj: Any,
model: Optional[str] = None,
messages: Optional[list] = None,
print_verbose: Optional[Callable[..., Any]] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
acompletion: bool = False,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
custom_prompt_dict: dict = {},
client=None,
organization: Optional[str] = None,
custom_llm_provider: Optional[str] = None,
drop_params: Optional[bool] = None,
):
messages = GroqChatConfig()._transform_messages(messages) # type: ignore
return super().completion(
model_response,
timeout,
optional_params,
logging_obj,
model,
messages,
print_verbose,
api_key,
api_base,
acompletion,
litellm_params,
logger_fn,
headers,
custom_prompt_dict,
client,
organization,
custom_llm_provider,
drop_params,
)