litellm/litellm/tests/test_bedrock_completion.py
Krish Dholakia be3c7b401e
LiteLLM Minor fixes + improvements (08/03/2024) (#5488)
* fix(internal_user_endpoints.py): set budget_reset_at for /user/update

* fix(vertex_and_google_ai_studio_gemini.py): handle accumulated json

Fixes https://github.com/BerriAI/litellm/issues/5479

* fix(vertex_ai_and_gemini.py): fix assistant message function call when content is not None

Fixes https://github.com/BerriAI/litellm/issues/5490

* fix(proxy_server.py): generic state uuid for okta sso

* fix(lago.py): improve debug logs

Debugging for https://github.com/BerriAI/litellm/issues/5477

* docs(bedrock.md): add bedrock cross-region inferencing to docs

* fix(azure.py): return azure response headers on aembedding call

* feat(azure.py): return azure response headers for `/audio/transcription`

* fix(types/utils.py): standardize deepseek / anthropic prompt caching usage information

Closes https://github.com/BerriAI/litellm/issues/5285

* docs(usage.md): add docs on litellm usage object

* test(test_completion.py): mark flaky test
2024-09-03 21:21:34 -07:00

1234 lines
44 KiB
Python

# @pytest.mark.skip(reason="AWS Suspended Account")
import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from unittest.mock import AsyncMock, Mock, patch
import pytest
import litellm
from litellm import (
ModelResponse,
RateLimitError,
Timeout,
completion,
completion_cost,
embedding,
)
from litellm.llms.bedrock.chat import BedrockLLM, ToolBlock
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.llms.prompt_templates.factory import _bedrock_tools_pt
# litellm.num_retries = 3
litellm.cache = None
litellm.success_callback = []
user_message = "Write a short poem about the sky"
messages = [{"content": user_message, "role": "user"}]
@pytest.fixture(autouse=True)
def reset_callbacks():
print("\npytest fixture - resetting callbacks")
litellm.success_callback = []
litellm._async_success_callback = []
litellm.failure_callback = []
litellm.callbacks = []
def test_completion_bedrock_claude_completion_auth():
print("calling bedrock claude completion params auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_completion_auth()
@pytest.mark.parametrize("streaming", [True, False])
def test_completion_bedrock_guardrails(streaming):
import os
litellm.set_verbose = True
import logging
from litellm._logging import verbose_logger
# verbose_logger.setLevel(logging.DEBUG)
try:
if streaming is False:
response = completion(
model="anthropic.claude-v2",
messages=[
{
"content": "where do i buy coffee from? ",
"role": "user",
}
],
max_tokens=10,
guardrailConfig={
"guardrailIdentifier": "ff6ujrregl1q",
"guardrailVersion": "DRAFT",
"trace": "enabled",
},
)
# Add any assertions here to check the response
print(response)
assert (
"Sorry, the model cannot answer this question. coffee guardrail applied"
in response.choices[0].message.content
)
assert "trace" in response
assert response.trace is not None
print("TRACE=", response.trace)
else:
response = completion(
model="anthropic.claude-v2",
messages=[
{
"content": "where do i buy coffee from? ",
"role": "user",
}
],
stream=True,
max_tokens=10,
guardrailConfig={
"guardrailIdentifier": "ff6ujrregl1q",
"guardrailVersion": "DRAFT",
"trace": "enabled",
},
)
saw_trace = False
for chunk in response:
if "trace" in chunk:
saw_trace = True
print(chunk)
assert (
saw_trace is True
), "Did not see trace in response even when trace=enabled sent in the guardrailConfig"
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_completion_bedrock_claude_2_1_completion_auth():
print("calling bedrock claude 2.1 completion params auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
response = completion(
model="bedrock/anthropic.claude-v2:1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_2_1_completion_auth()
def test_completion_bedrock_claude_external_client_auth():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
os.environ.pop("AWS_REGION_NAME", None)
try:
import boto3
litellm.set_verbose = True
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
)
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=bedrock,
)
# Add any assertions here to check the response
print(response)
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_external_client_auth()
@pytest.mark.skip(reason="Expired token, need to renew")
def test_completion_bedrock_claude_sts_client_auth():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_TEMP_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_TEMP_SECRET_ACCESS_KEY"]
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
try:
import boto3
litellm.set_verbose = True
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
response = embedding(
model="cohere.embed-multilingual-v3",
input=["hello world"],
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
response = completion(
model="gpt-3.5-turbo",
messages=messages,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
# Add any assertions here to check the response
print(response)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.fixture()
def bedrock_session_token_creds():
print("\ncalling oidc auto to get aws_session_token credentials")
import os
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_session_token = os.environ.get("AWS_SESSION_TOKEN")
bllm = BedrockLLM()
if aws_session_token is not None:
# For local testing
creds = bllm.get_credentials(
aws_region_name=aws_region_name,
aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
aws_session_token=aws_session_token,
)
else:
# For circle-ci testing
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = (
"arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
)
aws_web_identity_token = "oidc/circleci_v2/"
creds = bllm.get_credentials(
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
return creds
def process_stream_response(res, messages):
import types
if isinstance(res, litellm.utils.CustomStreamWrapper):
chunks = []
for part in res:
chunks.append(part)
text = part.choices[0].delta.content or ""
print(text, end="")
res = litellm.stream_chunk_builder(chunks, messages=messages)
else:
raise ValueError("Response object is not a streaming response")
return res
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_session_token(bedrock_session_token_creds):
print("\ncalling bedrock claude with aws_session_token auth")
import os
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_access_key_id = bedrock_session_token_creds.access_key
aws_secret_access_key = bedrock_session_token_creds.secret_key
aws_session_token = bedrock_session_token_creds.token
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
# This fourth call is to verify streaming api works
response_4 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
stream=True,
)
response_4 = process_stream_response(response_4, messages)
print(response_4)
assert len(response_4.choices) > 0
assert len(response_4.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_aws_bedrock_client(bedrock_session_token_creds):
print("\ncalling bedrock claude with aws_session_token auth")
import os
import boto3
from botocore.client import Config
aws_region_name = os.environ["AWS_REGION_NAME"]
aws_access_key_id = bedrock_session_token_creds.access_key
aws_secret_access_key = bedrock_session_token_creds.secret_key
aws_session_token = bedrock_session_token_creds.token
aws_bedrock_client_west = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
config=Config(read_timeout=600),
)
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=aws_bedrock_client_west,
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_bedrock_client=aws_bedrock_client_west,
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
aws_bedrock_client_east = boto3.client(
service_name="bedrock-runtime",
region_name="us-east-1",
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
config=Config(read_timeout=600),
)
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_bedrock_client=aws_bedrock_client_east,
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
# This fourth call is to verify streaming api works
response_4 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_bedrock_client=aws_bedrock_client_east,
stream=True,
)
response_4 = process_stream_response(response_4, messages)
print(response_4)
assert len(response_4.choices) > 0
assert len(response_4.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_claude_sts_client_auth()
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_claude_sts_oidc_auth():
print("\ncalling bedrock claude with oidc auth")
import os
aws_web_identity_token = "oidc/circleci_v2/"
aws_region_name = os.environ["AWS_REGION_NAME"]
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
try:
litellm.set_verbose = True
response_1 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_1)
assert len(response_1.choices) > 0
assert len(response_1.choices[0].message.content) > 0
# This second call is to verify that the cache isn't breaking anything
response_2 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=5,
temperature=0.2,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_2)
assert len(response_2.choices) > 0
assert len(response_2.choices[0].message.content) > 0
# This third call is to verify that the cache isn't used for a different region
response_3 = completion(
model="bedrock/anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=6,
temperature=0.3,
aws_region_name="us-east-1",
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
)
print(response_3)
assert len(response_3.choices) > 0
assert len(response_3.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.skipif(
os.environ.get("CIRCLE_OIDC_TOKEN_V2") is None,
reason="Cannot run without being in CircleCI Runner",
)
def test_completion_bedrock_httpx_command_r_sts_oidc_auth():
print("\ncalling bedrock httpx command r with oidc auth")
import os
aws_web_identity_token = "oidc/circleci_v2/"
aws_region_name = "us-west-2"
# aws_role_name = os.environ["AWS_TEMP_ROLE_NAME"]
# TODO: This is using ai.moda's IAM role, we should use LiteLLM's IAM role eventually
aws_role_name = "arn:aws:iam::335785316107:role/litellm-github-unit-tests-circleci"
try:
litellm.set_verbose = True
response = completion(
model="bedrock/cohere.command-r-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_region_name=aws_region_name,
aws_web_identity_token=aws_web_identity_token,
aws_role_name=aws_role_name,
aws_session_name="my-test-session",
aws_sts_endpoint="https://sts-fips.us-west-2.amazonaws.com",
aws_bedrock_runtime_endpoint="https://bedrock-runtime-fips.us-west-2.amazonaws.com",
)
# Add any assertions here to check the response
print(response)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"image_url",
[
"",
"https://avatars.githubusercontent.com/u/29436595?v=",
],
)
def test_bedrock_claude_3(image_url):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "user", "content": "Hi"},
{"role": "assistant", "content": "Hi"},
{
"role": "user",
"content": [
{"text": "describe this image", "type": "text"},
{
"image_url": {
"detail": "high",
"url": image_url,
},
"type": "image_url",
},
],
},
],
}
response: ModelResponse = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
num_retries=3,
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except litellm.InternalServerError:
pass
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"stop",
[""],
)
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
# "meta.llama3-70b-instruct-v1:0",
# "anthropic.claude-v2",
# "mistral.mixtral-8x7b-instruct-v0:1",
],
)
def test_bedrock_stop_value(stop, model):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "user", "content": "hey, how's it going?"},
],
"stop": stop,
}
response: ModelResponse = completion(
model="bedrock/{}".format(model),
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"system",
["You are an AI", [{"type": "text", "text": "You are an AI"}], ""],
)
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
"meta.llama3-70b-instruct-v1:0",
"anthropic.claude-v2",
"mistral.mixtral-8x7b-instruct-v0:1",
],
)
def test_bedrock_system_prompt(system, model):
try:
litellm.set_verbose = True
data = {
"max_tokens": 100,
"stream": False,
"temperature": 0.3,
"messages": [
{"role": "system", "content": system},
{"role": "assistant", "content": "hey, how's it going?"},
],
"user_continue_message": {"role": "user", "content": "Be a good bot!"},
}
response: ModelResponse = completion(
model="bedrock/{}".format(model),
**data,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bedrock_claude_3_tool_calling():
try:
litellm.set_verbose = True
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in fahrenheit?",
}
]
response: ModelResponse = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
) # type: ignore
print(f"response: {response}")
# Add any assertions here to check the response
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
messages.append(
response.choices[0].message.model_dump()
) # Add assistant tool invokes
tool_result = (
'{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
)
# Add user submitted tool results in the OpenAI format
messages.append(
{
"tool_call_id": response.choices[0].message.tool_calls[0].id,
"role": "tool",
"name": response.choices[0].message.tool_calls[0].function.name,
"content": tool_result,
}
)
# In the second response, Claude should deduce answer from tool results
second_response = completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=messages,
tools=tools,
tool_choice="auto",
)
print(f"second response: {second_response}")
assert isinstance(second_response.choices[0].message.content, str)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def encode_image(image_path):
import base64
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
@pytest.mark.skip(
reason="we already test claude-3, this is just another way to pass images"
)
def test_completion_claude_3_base64():
try:
litellm.set_verbose = True
litellm.num_retries = 3
image_path = "../proxy/cached_logo.jpg"
# Getting the base64 string
base64_image = encode_image(image_path)
resp = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Whats in this image?"},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + base64_image
},
},
],
}
],
)
prompt_tokens = resp.usage.prompt_tokens
raise Exception("it worked!")
except Exception as e:
if "500 Internal error encountered.'" in str(e):
pass
else:
pytest.fail(f"An exception occurred - {str(e)}")
def test_completion_bedrock_mistral_completion_auth():
print("calling bedrock mistral completion params auth")
import os
# aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
# aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
# aws_region_name = os.environ["AWS_REGION_NAME"]
# os.environ.pop("AWS_ACCESS_KEY_ID", None)
# os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
# os.environ.pop("AWS_REGION_NAME", None)
try:
response: ModelResponse = completion(
model="bedrock/mistral.mistral-7b-instruct-v0:2",
messages=messages,
max_tokens=10,
temperature=0.1,
) # type: ignore
# Add any assertions here to check the response
assert len(response.choices) > 0
assert len(response.choices[0].message.content) > 0
# os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
# os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
# os.environ["AWS_REGION_NAME"] = aws_region_name
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_completion_bedrock_mistral_completion_auth()
def test_bedrock_ptu():
"""
Check if a url with 'modelId' passed in, is created correctly
Reference: https://github.com/BerriAI/litellm/issues/3805
"""
client = HTTPHandler()
with patch.object(client, "post", new=Mock()) as mock_client_post:
litellm.set_verbose = True
from openai.types.chat import ChatCompletion
model_id = (
"arn:aws:bedrock:us-west-2:888602223428:provisioned-model/8fxff74qyhs3"
)
try:
response = litellm.completion(
model="bedrock/anthropic.claude-instant-v1",
messages=[{"role": "user", "content": "What's AWS?"}],
model_id=model_id,
client=client,
)
except Exception as e:
pass
assert "url" in mock_client_post.call_args.kwargs
assert (
mock_client_post.call_args.kwargs["url"]
== "https://bedrock-runtime.us-west-2.amazonaws.com/model/arn%3Aaws%3Abedrock%3Aus-west-2%3A888602223428%3Aprovisioned-model%2F8fxff74qyhs3/converse"
)
mock_client_post.assert_called_once()
@pytest.mark.asyncio
async def test_bedrock_extra_headers():
"""
Check if a url with 'modelId' passed in, is created correctly
Reference: https://github.com/BerriAI/litellm/issues/3805, https://github.com/BerriAI/litellm/issues/5389#issuecomment-2313677977
"""
client = AsyncHTTPHandler()
with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
litellm.set_verbose = True
from openai.types.chat import ChatCompletion
try:
response = await litellm.acompletion(
model="anthropic.claude-3-sonnet-20240229-v1:0",
messages=[{"role": "user", "content": "What's AWS?"}],
client=client,
extra_headers={"test": "hello world", "Authorization": "my-test-key"},
api_base="https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1",
)
except Exception as e:
pass
print(f"mock_client_post.call_args.kwargs: {mock_client_post.call_args.kwargs}")
assert (
mock_client_post.call_args.kwargs["url"]
== "https://gateway.ai.cloudflare.com/v1/fa4cdcab1f32b95ca3b53fd36043d691/test/aws-bedrock/bedrock-runtime/us-east-1/model/anthropic.claude-3-sonnet-20240229-v1:0/converse"
)
assert "test" in mock_client_post.call_args.kwargs["headers"]
assert mock_client_post.call_args.kwargs["headers"]["test"] == "hello world"
assert (
mock_client_post.call_args.kwargs["headers"]["Authorization"]
== "my-test-key"
)
mock_client_post.assert_called_once()
@pytest.mark.asyncio
async def test_bedrock_custom_prompt_template():
"""
Check if custom prompt template used for bedrock models
Reference: https://github.com/BerriAI/litellm/issues/4415
"""
client = AsyncHTTPHandler()
with patch.object(client, "post", new=AsyncMock()) as mock_client_post:
import json
try:
response = await litellm.acompletion(
model="bedrock/mistral.OpenOrca",
messages=[{"role": "user", "content": "What's AWS?"}],
client=client,
roles={
"system": {
"pre_message": "<|im_start|>system\n",
"post_message": "<|im_end|>",
},
"assistant": {
"pre_message": "<|im_start|>assistant\n",
"post_message": "<|im_end|>",
},
"user": {
"pre_message": "<|im_start|>user\n",
"post_message": "<|im_end|>",
},
},
bos_token="<s>",
eos_token="<|im_end|>",
)
except Exception as e:
pass
print(f"mock_client_post.call_args: {mock_client_post.call_args}")
assert "prompt" in mock_client_post.call_args.kwargs["data"]
prompt = json.loads(mock_client_post.call_args.kwargs["data"])["prompt"]
assert prompt == "<|im_start|>user\nWhat's AWS?<|im_end|>"
mock_client_post.assert_called_once()
def test_completion_bedrock_external_client_region():
print("\ncalling bedrock claude external client auth")
import os
aws_access_key_id = os.environ["AWS_ACCESS_KEY_ID"]
aws_secret_access_key = os.environ["AWS_SECRET_ACCESS_KEY"]
aws_region_name = "us-east-1"
os.environ.pop("AWS_ACCESS_KEY_ID", None)
os.environ.pop("AWS_SECRET_ACCESS_KEY", None)
client = HTTPHandler()
try:
import boto3
litellm.set_verbose = True
bedrock = boto3.client(
service_name="bedrock-runtime",
region_name=aws_region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
endpoint_url=f"https://bedrock-runtime.{aws_region_name}.amazonaws.com",
)
with patch.object(client, "post", new=Mock()) as mock_client_post:
try:
response = completion(
model="bedrock/anthropic.claude-instant-v1",
messages=messages,
max_tokens=10,
temperature=0.1,
aws_bedrock_client=bedrock,
client=client,
)
# Add any assertions here to check the response
print(response)
except Exception as e:
pass
print(f"mock_client_post.call_args: {mock_client_post.call_args}")
assert "us-east-1" in mock_client_post.call_args.kwargs["url"]
mock_client_post.assert_called_once()
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_bedrock_tool_calling():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
litellm.set_verbose = True
response = litellm.completion(
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
fallbacks=["bedrock/meta.llama3-1-8b-instruct-v1:0"],
messages=[
{
"role": "user",
"content": "What's the weather like in Boston today in Fahrenheit?",
}
],
tools=[
{
"type": "function",
"function": {
"name": "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993",
"description": "use this to get the current weather",
"parameters": {"type": "object", "properties": {}},
},
}
],
)
print("bedrock response")
print(response)
# Assert that the tools in response have the same function name as the input
_choice_1 = response.choices[0]
if _choice_1.message.tool_calls is not None:
print(_choice_1.message.tool_calls)
for tool_call in _choice_1.message.tool_calls:
_tool_Call_name = tool_call.function.name
if _tool_Call_name is not None and "DoSomethingVeryCool" in _tool_Call_name:
assert (
_tool_Call_name
== "-DoSomethingVeryCool-forLitellm_Testin999229291-0293993"
)
def test_bedrock_tools_pt_valid_names():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
},
"required": ["location"],
},
},
},
{
"type": "function",
"function": {
"name": "search_restaurants",
"description": "Search for restaurants",
"parameters": {
"type": "object",
"properties": {
"cuisine": {"type": "string"},
},
"required": ["cuisine"],
},
},
},
]
result = _bedrock_tools_pt(tools)
assert len(result) == 2
assert result[0]["toolSpec"]["name"] == "get_current_weather"
assert result[1]["toolSpec"]["name"] == "search_restaurants"
def test_bedrock_tools_pt_invalid_names():
"""
# related issue: https://github.com/BerriAI/litellm/issues/5007
# Bedrock tool names must satisfy regular expression pattern: [a-zA-Z][a-zA-Z0-9_]* ensure this is true
"""
tools = [
{
"type": "function",
"function": {
"name": "123-invalid@name",
"description": "Invalid name test",
"parameters": {
"type": "object",
"properties": {
"test": {"type": "string"},
},
"required": ["test"],
},
},
},
{
"type": "function",
"function": {
"name": "another@invalid#name",
"description": "Another invalid name test",
"parameters": {
"type": "object",
"properties": {
"test": {"type": "string"},
},
"required": ["test"],
},
},
},
]
result = _bedrock_tools_pt(tools)
print("bedrock tools after prompt formatting=", result)
assert len(result) == 2
assert result[0]["toolSpec"]["name"] == "a123_invalid_name"
assert result[1]["toolSpec"]["name"] == "another_invalid_name"
def test_not_found_error():
with pytest.raises(litellm.NotFoundError):
completion(
model="bedrock/bad_model",
messages=[
{
"role": "user",
"content": "What is the meaning of life",
}
],
)
def test_bedrock_cross_region_inference():
litellm.set_verbose = True
response = completion(
model="bedrock/us.anthropic.claude-3-haiku-20240307-v1:0",
messages=messages,
max_tokens=10,
temperature=0.1,
)