forked from phoenix/litellm-mirror
* fix(core_helpers.py): return None, instead of raising kwargs is None error Closes https://github.com/BerriAI/litellm/issues/6500 * docs(cost_tracking.md): cleanup doc * fix(vertex_and_google_ai_studio.py): handle function call with no params passed in Closes https://github.com/BerriAI/litellm/issues/6495 * test(test_router_timeout.py): add test for router timeout + retry logic * test: update test to use module level values * (fix) Prometheus - Log Postgres DB latency, status on prometheus (#6484) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * docs clarify vertex vs gemini * (router_strategy/) ensure all async functions use async cache methods (#6489) * fix router strat * use async set / get cache in router_strategy * add coverage for router strategy * fix imports * fix batch_get_cache * use async methods for least busy * fix least busy use async methods * fix test_dual_cache_increment * test async_get_available_deployment when routing_strategy="least-busy" * (fix) proxy - fix when `STORE_MODEL_IN_DB` should be set (#6492) * set store_model_in_db at the top * correctly use store_model_in_db global * (fix) `PrometheusServicesLogger` `_get_metric` should return metric in Registry (#6486) * fix logging DB fails on prometheus * unit testing log to otel wrapper * unit testing for service logger + prometheus * use LATENCY buckets for service logging * fix service logging * fix _get_metric in prom services logger * add clear doc string * unit testing for prom service logger * bump: version 1.51.0 → 1.51.1 * Add `azure/gpt-4o-mini-2024-07-18` to model_prices_and_context_window.json (#6477) * Update utils.py (#6468) Fixed missing keys * (perf) Litellm redis router fix - ~100ms improvement (#6483) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * refactor: pass parent_otel_span for redis caching calls in router allows for more observability into what calls are causing latency issues * test: update tests with new params * refactor: ensure e2e otel tracing for router * refactor(router.py): add more otel tracing acrosss router catch all latency issues for router requests * fix: fix linting error * fix(router.py): fix linting error * fix: fix test * test: fix tests * fix(dual_cache.py): pass ttl to redis cache * fix: fix param * perf(cooldown_cache.py): improve cooldown cache, to store cache results in memory for 5s, prevents redis call from being made on each request reduces 100ms latency per call with caching enabled on router * fix: fix test * fix(cooldown_cache.py): handle if a result is None * fix(cooldown_cache.py): add debug statements * refactor(dual_cache.py): move to using an in-memory check for batch get cache, to prevent redis from being hit for every call * fix(cooldown_cache.py): fix linting erropr * refactor(prometheus.py): move to using standard logging payload for reading the remaining request / tokens Ensures prometheus token tracking works for anthropic as well * fix: fix linting error * fix(redis_cache.py): make sure ttl is always int (handle float values) Fixes issue where redis_client.ex was not working correctly due to float ttl * fix: fix linting error * test: update test * fix: fix linting error --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Xingyao Wang <xingyao@all-hands.dev> Co-authored-by: vibhanshu-ob <115142120+vibhanshu-ob@users.noreply.github.com>
106 lines
3.6 KiB
Python
106 lines
3.6 KiB
Python
"""
|
|
Unit tests for StandardLoggingPayloadSetup
|
|
"""
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock
|
|
|
|
from pydantic.main import Model
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system-path
|
|
|
|
import pytest
|
|
import litellm
|
|
from litellm.types.utils import Usage
|
|
from litellm.litellm_core_utils.litellm_logging import StandardLoggingPayloadSetup
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"response_obj,expected_values",
|
|
[
|
|
# Test None input
|
|
(None, (0, 0, 0)),
|
|
# Test empty dict
|
|
({}, (0, 0, 0)),
|
|
# Test valid usage dict
|
|
(
|
|
{
|
|
"usage": {
|
|
"prompt_tokens": 10,
|
|
"completion_tokens": 20,
|
|
"total_tokens": 30,
|
|
}
|
|
},
|
|
(10, 20, 30),
|
|
),
|
|
# Test with litellm.Usage object
|
|
(
|
|
{"usage": Usage(prompt_tokens=15, completion_tokens=25, total_tokens=40)},
|
|
(15, 25, 40),
|
|
),
|
|
# Test invalid usage type
|
|
({"usage": "invalid"}, (0, 0, 0)),
|
|
# Test None usage
|
|
({"usage": None}, (0, 0, 0)),
|
|
],
|
|
)
|
|
def test_get_usage(response_obj, expected_values):
|
|
"""
|
|
Make sure values returned from get_usage are always integers
|
|
"""
|
|
|
|
usage = StandardLoggingPayloadSetup.get_usage_from_response_obj(response_obj)
|
|
|
|
# Check types
|
|
assert isinstance(usage.prompt_tokens, int)
|
|
assert isinstance(usage.completion_tokens, int)
|
|
assert isinstance(usage.total_tokens, int)
|
|
|
|
# Check values
|
|
assert usage.prompt_tokens == expected_values[0]
|
|
assert usage.completion_tokens == expected_values[1]
|
|
assert usage.total_tokens == expected_values[2]
|
|
|
|
|
|
def test_get_additional_headers():
|
|
additional_headers = {
|
|
"x-ratelimit-limit-requests": "2000",
|
|
"x-ratelimit-remaining-requests": "1999",
|
|
"x-ratelimit-limit-tokens": "160000",
|
|
"x-ratelimit-remaining-tokens": "160000",
|
|
"llm_provider-date": "Tue, 29 Oct 2024 23:57:37 GMT",
|
|
"llm_provider-content-type": "application/json",
|
|
"llm_provider-transfer-encoding": "chunked",
|
|
"llm_provider-connection": "keep-alive",
|
|
"llm_provider-anthropic-ratelimit-requests-limit": "2000",
|
|
"llm_provider-anthropic-ratelimit-requests-remaining": "1999",
|
|
"llm_provider-anthropic-ratelimit-requests-reset": "2024-10-29T23:57:40Z",
|
|
"llm_provider-anthropic-ratelimit-tokens-limit": "160000",
|
|
"llm_provider-anthropic-ratelimit-tokens-remaining": "160000",
|
|
"llm_provider-anthropic-ratelimit-tokens-reset": "2024-10-29T23:57:36Z",
|
|
"llm_provider-request-id": "req_01F6CycZZPSHKRCCctcS1Vto",
|
|
"llm_provider-via": "1.1 google",
|
|
"llm_provider-cf-cache-status": "DYNAMIC",
|
|
"llm_provider-x-robots-tag": "none",
|
|
"llm_provider-server": "cloudflare",
|
|
"llm_provider-cf-ray": "8da71bdbc9b57abb-SJC",
|
|
"llm_provider-content-encoding": "gzip",
|
|
"llm_provider-x-ratelimit-limit-requests": "2000",
|
|
"llm_provider-x-ratelimit-remaining-requests": "1999",
|
|
"llm_provider-x-ratelimit-limit-tokens": "160000",
|
|
"llm_provider-x-ratelimit-remaining-tokens": "160000",
|
|
}
|
|
additional_logging_headers = StandardLoggingPayloadSetup.get_additional_headers(
|
|
additional_headers
|
|
)
|
|
assert additional_logging_headers == {
|
|
"x_ratelimit_limit_requests": 2000,
|
|
"x_ratelimit_remaining_requests": 1999,
|
|
"x_ratelimit_limit_tokens": 160000,
|
|
"x_ratelimit_remaining_tokens": 160000,
|
|
}
|