forked from phoenix/litellm-mirror
* feat(proxy/_types.py): add lago billing to callbacks ui Closes https://github.com/BerriAI/litellm/issues/5472 * fix(anthropic.py): return anthropic prompt caching information Fixes https://github.com/BerriAI/litellm/issues/5364 * feat(bedrock/chat.py): support 'json_schema' for bedrock models Closes https://github.com/BerriAI/litellm/issues/5434 * fix(bedrock/embed/embeddings.py): support async embeddings for amazon titan models * fix: linting fixes * fix: handle key errors * fix(bedrock/chat.py): fix bedrock ai21 streaming object * feat(bedrock/embed): support bedrock embedding optional params * fix(databricks.py): fix usage chunk * fix(internal_user_endpoints.py): apply internal user defaults, if user role updated Fixes issue where user update wouldn't apply defaults * feat(slack_alerting.py): provide multiple slack channels for a given alert type multiple channels might be interested in receiving an alert for a given type * docs(alerting.md): add multiple channel alerting to docs
794 lines
27 KiB
Python
794 lines
27 KiB
Python
# What is this?
|
|
## Handler file for databricks API https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
|
|
import copy
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
|
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionDeltaChunk,
|
|
ChatCompletionResponseMessage,
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionToolCallFunctionChunk,
|
|
ChatCompletionUsageBlock,
|
|
)
|
|
from litellm.types.utils import (
|
|
CustomStreamingDecoder,
|
|
GenericStreamingChunk,
|
|
ProviderField,
|
|
)
|
|
from litellm.utils import CustomStreamWrapper, EmbeddingResponse, ModelResponse, Usage
|
|
|
|
from .base import BaseLLM
|
|
from .prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
|
|
class DatabricksError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url="https://docs.databricks.com/")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class DatabricksConfig:
|
|
"""
|
|
Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
|
|
"""
|
|
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
stop: Optional[Union[List[str], str]] = None
|
|
n: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
stop: Optional[Union[List[str], str]] = None,
|
|
n: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_required_params(self) -> List[ProviderField]:
|
|
"""For a given provider, return it's required fields with a description"""
|
|
return [
|
|
ProviderField(
|
|
field_name="api_key",
|
|
field_type="string",
|
|
field_description="Your Databricks API Key.",
|
|
field_value="dapi...",
|
|
),
|
|
ProviderField(
|
|
field_name="api_base",
|
|
field_type="string",
|
|
field_description="Your Databricks API Base.",
|
|
field_value="https://adb-..",
|
|
),
|
|
]
|
|
|
|
def get_supported_openai_params(self):
|
|
return ["stream", "stop", "temperature", "top_p", "max_tokens", "n"]
|
|
|
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
|
for param, value in non_default_params.items():
|
|
if param == "max_tokens":
|
|
optional_params["max_tokens"] = value
|
|
if param == "n":
|
|
optional_params["n"] = value
|
|
if param == "stream" and value == True:
|
|
optional_params["stream"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "stop":
|
|
optional_params["stop"] = value
|
|
return optional_params
|
|
|
|
|
|
class DatabricksEmbeddingConfig:
|
|
"""
|
|
Reference: https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/api-reference#--embedding-task
|
|
"""
|
|
|
|
instruction: Optional[str] = (
|
|
None # An optional instruction to pass to the embedding model. BGE Authors recommend 'Represent this sentence for searching relevant passages:' for retrieval queries
|
|
)
|
|
|
|
def __init__(self, instruction: Optional[str] = None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_supported_openai_params(
|
|
self,
|
|
): # no optional openai embedding params supported
|
|
return []
|
|
|
|
def map_openai_params(self, non_default_params: dict, optional_params: dict):
|
|
return optional_params
|
|
|
|
|
|
async def make_call(
|
|
client: AsyncHTTPHandler,
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
response = await client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise DatabricksError(status_code=response.status_code, message=response.text)
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream: Any = streaming_decoder.aiter_bytes(
|
|
response.aiter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.aiter_lines(), sync_stream=False
|
|
)
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
def make_sync_call(
|
|
client: Optional[HTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
if client is None:
|
|
client = HTTPHandler() # Create a new client if none provided
|
|
|
|
response = client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise DatabricksError(status_code=response.status_code, message=response.read())
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream = streaming_decoder.iter_bytes(
|
|
response.iter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.iter_lines(), sync_stream=True
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
class DatabricksChatCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
# makes headers for API call
|
|
|
|
def _validate_environment(
|
|
self,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
endpoint_type: Literal["chat_completions", "embeddings"],
|
|
custom_endpoint: Optional[bool],
|
|
headers: Optional[dict],
|
|
) -> Tuple[str, dict]:
|
|
if api_key is None and headers is None:
|
|
raise DatabricksError(
|
|
status_code=400,
|
|
message="Missing API Key - A call is being made to LLM Provider but no key is set either in the environment variables ({LLM_PROVIDER}_API_KEY) or via params",
|
|
)
|
|
|
|
if api_base is None:
|
|
raise DatabricksError(
|
|
status_code=400,
|
|
message="Missing API Base - A call is being made to LLM Provider but no api base is set either in the environment variables ({LLM_PROVIDER}_API_KEY) or via params",
|
|
)
|
|
|
|
if headers is None:
|
|
headers = {
|
|
"Authorization": "Bearer {}".format(api_key),
|
|
"Content-Type": "application/json",
|
|
}
|
|
else:
|
|
if api_key is not None:
|
|
headers.update({"Authorization": "Bearer {}".format(api_key)})
|
|
|
|
if endpoint_type == "chat_completions" and custom_endpoint is not True:
|
|
api_base = "{}/chat/completions".format(api_base)
|
|
elif endpoint_type == "embeddings" and custom_endpoint is not True:
|
|
api_base = "{}/embeddings".format(api_base)
|
|
return api_base, headers
|
|
|
|
async def acompletion_stream_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
custom_llm_provider: str,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
) -> CustomStreamWrapper:
|
|
|
|
data["stream"] = True
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=None,
|
|
make_call=partial(
|
|
make_call,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
),
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
async def acompletion_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
base_model: Optional[str],
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
) -> ModelResponse:
|
|
if timeout is None:
|
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
|
|
self.async_handler = AsyncHTTPHandler(timeout=timeout)
|
|
|
|
try:
|
|
response = await self.async_handler.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException as e:
|
|
raise DatabricksError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=response_json,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
response = ModelResponse(**response_json)
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
return response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_llm_provider: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key: Optional[str],
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers: Optional[dict] = None,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
streaming_decoder: Optional[
|
|
CustomStreamingDecoder
|
|
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
|
):
|
|
custom_endpoint = custom_endpoint or optional_params.pop(
|
|
"custom_endpoint", None
|
|
)
|
|
base_model: Optional[str] = optional_params.pop("base_model", None)
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="chat_completions",
|
|
custom_endpoint=custom_endpoint,
|
|
headers=headers,
|
|
)
|
|
## Load Config
|
|
config = litellm.DatabricksConfig().get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
stream: bool = optional_params.get("stream", None) or False
|
|
optional_params["stream"] = stream
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
if acompletion is True:
|
|
if client is not None and isinstance(client, HTTPHandler):
|
|
client = None
|
|
if (
|
|
stream is not None and stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
print_verbose("makes async anthropic streaming POST request")
|
|
data["stream"] = stream
|
|
return self.acompletion_stream_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
client=client,
|
|
custom_llm_provider=custom_llm_provider,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
else:
|
|
return self.acompletion_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
base_model=base_model,
|
|
)
|
|
else:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout) # type: ignore
|
|
## COMPLETION CALL
|
|
if stream is True:
|
|
return CustomStreamWrapper(
|
|
completion_stream=None,
|
|
make_call=partial(
|
|
make_sync_call,
|
|
client=None,
|
|
api_base=api_base,
|
|
headers=headers, # type: ignore
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
),
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
else:
|
|
try:
|
|
response = client.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code, message=response.text
|
|
)
|
|
except httpx.TimeoutException as e:
|
|
raise DatabricksError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
response = ModelResponse(**response_json)
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
|
|
return response
|
|
|
|
async def aembedding(
|
|
self,
|
|
input: list,
|
|
data: dict,
|
|
model_response: ModelResponse,
|
|
timeout: float,
|
|
api_key: str,
|
|
api_base: str,
|
|
logging_obj,
|
|
headers: dict,
|
|
client=None,
|
|
) -> EmbeddingResponse:
|
|
response = None
|
|
try:
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.async_client = client
|
|
|
|
try:
|
|
response = await self.async_client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=response.text if response else str(e),
|
|
)
|
|
except httpx.TimeoutException as e:
|
|
raise DatabricksError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
return EmbeddingResponse(**response_json)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
)
|
|
raise e
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: list,
|
|
timeout: float,
|
|
logging_obj,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
optional_params: dict,
|
|
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
|
|
client=None,
|
|
aembedding=None,
|
|
headers: Optional[dict] = None,
|
|
) -> EmbeddingResponse:
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="embeddings",
|
|
custom_endpoint=False,
|
|
headers=headers,
|
|
)
|
|
model = model
|
|
data = {"model": model, "input": input, **optional_params}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data, "api_base": api_base},
|
|
)
|
|
|
|
if aembedding == True:
|
|
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
|
|
if client is None or isinstance(client, AsyncHTTPHandler):
|
|
self.client = HTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
self.client = client
|
|
|
|
## EMBEDDING CALL
|
|
try:
|
|
response = self.client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
) # type: ignore
|
|
|
|
response.raise_for_status() # type: ignore
|
|
|
|
response_json = response.json() # type: ignore
|
|
except httpx.HTTPStatusError as e:
|
|
raise DatabricksError(
|
|
status_code=e.response.status_code,
|
|
message=response.text if response else str(e),
|
|
)
|
|
except httpx.TimeoutException as e:
|
|
raise DatabricksError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise DatabricksError(status_code=500, message=str(e))
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
original_response=response_json,
|
|
)
|
|
|
|
return litellm.EmbeddingResponse(**response_json)
|
|
|
|
|
|
class ModelResponseIterator:
|
|
def __init__(self, streaming_response, sync_stream: bool):
|
|
self.streaming_response = streaming_response
|
|
|
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
|
try:
|
|
processed_chunk = litellm.ModelResponse(**chunk, stream=True) # type: ignore
|
|
|
|
text = ""
|
|
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
|
is_finished = False
|
|
finish_reason = ""
|
|
usage: Optional[ChatCompletionUsageBlock] = None
|
|
|
|
if processed_chunk.choices[0].delta.content is not None: # type: ignore
|
|
text = processed_chunk.choices[0].delta.content # type: ignore
|
|
|
|
if (
|
|
processed_chunk.choices[0].delta.tool_calls is not None # type: ignore
|
|
and len(processed_chunk.choices[0].delta.tool_calls) > 0 # type: ignore
|
|
and processed_chunk.choices[0].delta.tool_calls[0].function is not None # type: ignore
|
|
and processed_chunk.choices[0].delta.tool_calls[0].function.arguments # type: ignore
|
|
is not None
|
|
):
|
|
tool_use = ChatCompletionToolCallChunk(
|
|
id=processed_chunk.choices[0].delta.tool_calls[0].id, # type: ignore
|
|
type="function",
|
|
function=ChatCompletionToolCallFunctionChunk(
|
|
name=processed_chunk.choices[0]
|
|
.delta.tool_calls[0] # type: ignore
|
|
.function.name,
|
|
arguments=processed_chunk.choices[0]
|
|
.delta.tool_calls[0] # type: ignore
|
|
.function.arguments,
|
|
),
|
|
index=processed_chunk.choices[0].index,
|
|
)
|
|
|
|
if processed_chunk.choices[0].finish_reason is not None:
|
|
is_finished = True
|
|
finish_reason = processed_chunk.choices[0].finish_reason
|
|
|
|
if hasattr(processed_chunk, "usage") and isinstance(
|
|
processed_chunk.usage, litellm.Usage
|
|
):
|
|
usage_chunk: litellm.Usage = processed_chunk.usage
|
|
|
|
usage = ChatCompletionUsageBlock(
|
|
prompt_tokens=usage_chunk.prompt_tokens,
|
|
completion_tokens=usage_chunk.completion_tokens,
|
|
total_tokens=usage_chunk.total_tokens,
|
|
)
|
|
|
|
return GenericStreamingChunk(
|
|
text=text,
|
|
tool_use=tool_use,
|
|
is_finished=is_finished,
|
|
finish_reason=finish_reason,
|
|
usage=usage,
|
|
index=0,
|
|
)
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
|
|
|
# Sync iterator
|
|
def __iter__(self):
|
|
self.response_iterator = self.streaming_response
|
|
return self
|
|
|
|
def __next__(self):
|
|
try:
|
|
chunk = self.response_iterator.__next__()
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
chunk = chunk.replace("data:", "")
|
|
chunk = chunk.strip()
|
|
if len(chunk) > 0:
|
|
json_chunk = json.loads(chunk)
|
|
return self.chunk_parser(chunk=json_chunk)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
|
|
|
# Async iterator
|
|
def __aiter__(self):
|
|
self.async_response_iterator = self.streaming_response.__aiter__()
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
chunk = await self.async_response_iterator.__anext__()
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
chunk = chunk.replace("data:", "")
|
|
chunk = chunk.strip()
|
|
if chunk == "[DONE]":
|
|
raise StopAsyncIteration
|
|
if len(chunk) > 0:
|
|
json_chunk = json.loads(chunk)
|
|
return self.chunk_parser(chunk=json_chunk)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|