litellm/litellm/llms/azure.py
2024-07-25 17:30:15 -07:00

2731 lines
95 KiB
Python

import asyncio
import json
import os
import time
import types
import uuid
from typing import (
Any,
BinaryIO,
Callable,
Coroutine,
Iterable,
List,
Literal,
Optional,
Union,
)
import httpx # type: ignore
import requests
from openai import AsyncAzureOpenAI, AzureOpenAI
from pydantic import BaseModel
from typing_extensions import overload
import litellm
from litellm import ImageResponse, OpenAIConfig
from litellm.caching import DualCache
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
Choices,
CustomStreamWrapper,
Message,
ModelResponse,
TranscriptionResponse,
UnsupportedParamsError,
convert_to_model_response_object,
get_secret,
modify_url,
)
from ..types.llms.openai import (
Assistant,
AssistantEventHandler,
AssistantStreamManager,
AssistantToolParam,
AsyncAssistantEventHandler,
AsyncAssistantStreamManager,
AsyncCursorPage,
HttpxBinaryResponseContent,
MessageData,
OpenAICreateThreadParamsMessage,
OpenAIMessage,
Run,
SyncCursorPage,
Thread,
)
from .base import BaseLLM
azure_ad_cache = DualCache()
class AzureOpenAIError(Exception):
def __init__(
self,
status_code,
message,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message = message
if request:
self.request = request
else:
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
if response:
self.response = response
else:
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AzureOpenAIConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
- `function_call` (string or object): This optional parameter controls how the model calls functions.
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
"""
def __init__(
self,
frequency_penalty: Optional[int] = None,
function_call: Optional[Union[str, dict]] = None,
functions: Optional[list] = None,
logit_bias: Optional[dict] = None,
max_tokens: Optional[int] = None,
n: Optional[int] = None,
presence_penalty: Optional[int] = None,
stop: Optional[Union[str, list]] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
) -> None:
locals_ = locals().copy()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"temperature",
"n",
"stream",
"stop",
"max_tokens",
"tools",
"tool_choice",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"user",
"function_call",
"functions",
"tools",
"tool_choice",
"top_p",
"logprobs",
"top_logprobs",
"response_format",
"seed",
"extra_headers",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
api_version: str, # Y-M-D-{optional}
drop_params,
) -> dict:
supported_openai_params = self.get_supported_openai_params()
api_version_times = api_version.split("-")
api_version_year = api_version_times[0]
api_version_month = api_version_times[1]
api_version_day = api_version_times[2]
for param, value in non_default_params.items():
if param == "tool_choice":
"""
This parameter requires API version 2023-12-01-preview or later
tool_choice='required' is not supported as of 2024-05-01-preview
"""
## check if api version supports this param ##
if (
api_version_year < "2023"
or (api_version_year == "2023" and api_version_month < "12")
or (
api_version_year == "2023"
and api_version_month == "12"
and api_version_day < "01"
)
):
if litellm.drop_params == True or (
drop_params is not None and drop_params == True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
)
elif value == "required" and (
api_version_year == "2024" and api_version_month <= "05"
): ## check if tool_choice value is supported ##
if litellm.drop_params == True or (
drop_params is not None and drop_params == True
):
pass
else:
raise UnsupportedParamsError(
status_code=400,
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
)
else:
optional_params["tool_choice"] = value
elif param in supported_openai_params:
optional_params[param] = value
return optional_params
def get_mapped_special_auth_params(self) -> dict:
return {"token": "azure_ad_token"}
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "token":
optional_params["azure_ad_token"] = value
return optional_params
def get_eu_regions(self) -> List[str]:
"""
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
"""
return ["europe", "sweden", "switzerland", "france", "uk"]
class AzureOpenAIAssistantsAPIConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/assistants-reference-messages?tabs=python#create-message
"""
def __init__(
self,
) -> None:
pass
def get_supported_openai_create_message_params(self):
return [
"role",
"content",
"attachments",
"metadata",
]
def map_openai_params_create_message_params(
self, non_default_params: dict, optional_params: dict
):
for param, value in non_default_params.items():
if param == "role":
optional_params["role"] = value
if param == "metadata":
optional_params["metadata"] = value
elif param == "content": # only string accepted
if isinstance(value, str):
optional_params["content"] = value
else:
raise litellm.utils.UnsupportedParamsError(
message="Azure only accepts content as a string.",
status_code=400,
)
elif (
param == "attachments"
): # this is a v2 param. Azure currently supports the old 'file_id's param
file_ids: List[str] = []
if isinstance(value, list):
for item in value:
if "file_id" in item:
file_ids.append(item["file_id"])
else:
if litellm.drop_params == True:
pass
else:
raise litellm.utils.UnsupportedParamsError(
message="Azure doesn't support {}. To drop it from the call, set `litellm.drop_params = True.".format(
value
),
status_code=400,
)
else:
raise litellm.utils.UnsupportedParamsError(
message="Invalid param. attachments should always be a list. Got={}, Expected=List. Raw value={}".format(
type(value), value
),
status_code=400,
)
return optional_params
def select_azure_base_url_or_endpoint(azure_client_params: dict):
# azure_client_params = {
# "api_version": api_version,
# "azure_endpoint": api_base,
# "azure_deployment": model,
# "http_client": litellm.client_session,
# "max_retries": max_retries,
# "timeout": timeout,
# }
azure_endpoint = azure_client_params.get("azure_endpoint", None)
if azure_endpoint is not None:
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
if "/openai/deployments" in azure_endpoint:
# this is base_url, not an azure_endpoint
azure_client_params["base_url"] = azure_endpoint
azure_client_params.pop("azure_endpoint")
return azure_client_params
def get_azure_ad_token_from_oidc(azure_ad_token: str):
azure_client_id = os.getenv("AZURE_CLIENT_ID", None)
azure_tenant_id = os.getenv("AZURE_TENANT_ID", None)
azure_authority_host = os.getenv(
"AZURE_AUTHORITY_HOST", "https://login.microsoftonline.com"
)
if azure_client_id is None or azure_tenant_id is None:
raise AzureOpenAIError(
status_code=422,
message="AZURE_CLIENT_ID and AZURE_TENANT_ID must be set",
)
oidc_token = get_secret(azure_ad_token)
if oidc_token is None:
raise AzureOpenAIError(
status_code=401,
message="OIDC token could not be retrieved from secret manager.",
)
azure_ad_token_cache_key = json.dumps(
{
"azure_client_id": azure_client_id,
"azure_tenant_id": azure_tenant_id,
"azure_authority_host": azure_authority_host,
"oidc_token": oidc_token,
}
)
azure_ad_token_access_token = azure_ad_cache.get_cache(azure_ad_token_cache_key)
if azure_ad_token_access_token is not None:
return azure_ad_token_access_token
req_token = httpx.post(
f"{azure_authority_host}/{azure_tenant_id}/oauth2/v2.0/token",
data={
"client_id": azure_client_id,
"grant_type": "client_credentials",
"scope": "https://cognitiveservices.azure.com/.default",
"client_assertion_type": "urn:ietf:params:oauth:client-assertion-type:jwt-bearer",
"client_assertion": oidc_token,
},
)
if req_token.status_code != 200:
raise AzureOpenAIError(
status_code=req_token.status_code,
message=req_token.text,
)
azure_ad_token_json = req_token.json()
azure_ad_token_access_token = azure_ad_token_json.get("access_token", None)
azure_ad_token_expires_in = azure_ad_token_json.get("expires_in", None)
if azure_ad_token_access_token is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token access_token not returned"
)
if azure_ad_token_expires_in is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token expires_in not returned"
)
azure_ad_cache.set_cache(
key=azure_ad_token_cache_key,
value=azure_ad_token_access_token,
ttl=azure_ad_token_expires_in,
)
return azure_ad_token_access_token
class AzureChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
def validate_environment(self, api_key, azure_ad_token):
headers = {
"content-type": "application/json",
}
if api_key is not None:
headers["api-key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
headers["Authorization"] = f"Bearer {azure_ad_token}"
return headers
def _get_sync_azure_client(
self,
api_version: Optional[str],
api_base: Optional[str],
api_key: Optional[str],
azure_ad_token: Optional[str],
model: str,
max_retries: int,
timeout: Union[float, httpx.Timeout],
client: Optional[Any],
client_type: Literal["sync", "async"],
):
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
if client_type == "sync":
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
elif client_type == "async":
azure_client = AsyncAzureOpenAI(**azure_client_params) # type: ignore
else:
azure_client = client
if api_version is not None and isinstance(azure_client._custom_query, dict):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
return azure_client
async def make_azure_openai_chat_completion_request(
self,
azure_client: AsyncAzureOpenAI,
data: dict,
timeout: Union[float, httpx.Timeout],
):
"""
Helper to:
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True
- call chat.completions.create by default
"""
try:
if litellm.return_response_headers is True:
raw_response = (
await azure_client.chat.completions.with_raw_response.create(
**data, timeout=timeout
)
)
headers = dict(raw_response.headers)
response = raw_response.parse()
return headers, response
else:
response = await azure_client.chat.completions.create(
**data, timeout=timeout
)
return None, response
except Exception as e:
raise e
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
api_key: str,
api_base: str,
api_version: str,
api_type: str,
azure_ad_token: str,
print_verbose: Callable,
timeout: Union[float, httpx.Timeout],
logging_obj: LiteLLMLoggingObj,
optional_params,
litellm_params,
logger_fn,
acompletion: bool = False,
headers: Optional[dict] = None,
client=None,
):
super().completion()
exception_mapping_worked = False
try:
if model is None or messages is None:
raise AzureOpenAIError(
status_code=422, message=f"Missing model or messages"
)
max_retries = optional_params.pop("max_retries", 2)
### CHECK IF CLOUDFLARE AI GATEWAY ###
### if so - set the model as part of the base url
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
if client is None:
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
azure_client_params = {
"api_version": api_version,
"base_url": f"{api_base}",
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(
azure_ad_token
)
azure_client_params["azure_ad_token"] = azure_ad_token
if acompletion is True:
client = AsyncAzureOpenAI(**azure_client_params)
else:
client = AzureOpenAI(**azure_client_params)
data = {"model": None, "messages": messages, **optional_params}
else:
data = {
"model": model, # type: ignore
"messages": messages,
**optional_params,
}
if acompletion is True:
if optional_params.get("stream", False):
return self.async_streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
)
else:
return self.acompletion(
api_base=api_base,
data=data,
model_response=model_response,
api_key=api_key,
api_version=api_version,
model=model,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
logging_obj=logging_obj,
)
elif "stream" in optional_params and optional_params["stream"] == True:
return self.streaming(
logging_obj=logging_obj,
api_base=api_base,
data=data,
model=model,
api_key=api_key,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
client=client,
)
else:
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"headers": {
"api_key": api_key,
"azure_ad_token": azure_ad_token,
},
"api_version": api_version,
"api_base": api_base,
"complete_input_dict": data,
},
)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault(
"api-version", api_version
)
response = azure_client.chat.completions.create(**data, timeout=timeout) # type: ignore
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=stringified_response,
additional_args={
"headers": headers,
"api_version": api_version,
"api_base": api_base,
},
)
return convert_to_model_response_object(
response_object=stringified_response,
model_response_object=model_response,
)
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if hasattr(e, "status_code"):
raise AzureOpenAIError(status_code=e.status_code, message=str(e))
else:
raise AzureOpenAIError(status_code=500, message=str(e))
async def acompletion(
self,
api_key: str,
api_version: str,
model: str,
api_base: str,
data: dict,
timeout: Any,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
azure_ad_token: Optional[str] = None,
client=None, # this is the AsyncAzureOpenAI
):
response = None
try:
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
# setting Azure client
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
headers, response = await self.make_azure_openai_chat_completion_request(
azure_client=azure_client,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
stringified_response = response.model_dump()
logging_obj.post_call(
input=data["messages"],
api_key=api_key,
original_response=stringified_response,
additional_args={"complete_input_dict": data},
)
return convert_to_model_response_object(
response_object=stringified_response,
model_response_object=model_response,
)
except AzureOpenAIError as e:
## LOGGING
logging_obj.post_call(
input=data["messages"],
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
exception_mapping_worked = True
raise e
except asyncio.CancelledError as e:
## LOGGING
logging_obj.post_call(
input=data["messages"],
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise AzureOpenAIError(status_code=500, message=str(e))
except Exception as e:
## LOGGING
logging_obj.post_call(
input=data["messages"],
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
if hasattr(e, "status_code"):
raise e
else:
raise AzureOpenAIError(status_code=500, message=str(e))
def streaming(
self,
logging_obj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
):
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(azure_client._custom_query, dict):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
response = azure_client.chat.completions.create(**data, timeout=timeout)
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure",
logging_obj=logging_obj,
)
return streamwrapper
async def async_streaming(
self,
logging_obj: LiteLLMLoggingObj,
api_base: str,
api_key: str,
api_version: str,
data: dict,
model: str,
timeout: Any,
azure_ad_token: Optional[str] = None,
client=None,
):
try:
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": data.pop("max_retries", 2),
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if client is None:
azure_client = AsyncAzureOpenAI(**azure_client_params)
else:
azure_client = client
if api_version is not None and isinstance(
azure_client._custom_query, dict
):
# set api_version to version passed by user
azure_client._custom_query.setdefault("api-version", api_version)
## LOGGING
logging_obj.pre_call(
input=data["messages"],
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"acompletion": True,
"complete_input_dict": data,
},
)
headers, response = await self.make_azure_openai_chat_completion_request(
azure_client=azure_client,
data=data,
timeout=timeout,
)
logging_obj.model_call_details["response_headers"] = headers
# return response
streamwrapper = CustomStreamWrapper(
completion_stream=response,
model=model,
custom_llm_provider="azure",
logging_obj=logging_obj,
)
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
except Exception as e:
if hasattr(e, "status_code"):
raise AzureOpenAIError(status_code=e.status_code, message=str(e))
else:
raise AzureOpenAIError(status_code=500, message=str(e))
async def aembedding(
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
api_key: str,
input: list,
client: Optional[AsyncAzureOpenAI] = None,
logging_obj=None,
timeout=None,
):
response = None
try:
if client is None:
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
else:
openai_aclient = client
response = await openai_aclient.embeddings.create(**data, timeout=timeout)
stringified_response = response.model_dump()
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(
response_object=stringified_response,
model_response_object=model_response,
response_type="embedding",
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
def embedding(
self,
model: str,
input: list,
api_key: str,
api_base: str,
api_version: str,
timeout: float,
logging_obj=None,
model_response=None,
optional_params=None,
azure_ad_token: Optional[str] = None,
client=None,
aembedding=None,
):
super().embedding()
exception_mapping_worked = False
if self._client_session is None:
self._client_session = self.create_client_session()
try:
data = {"model": model, "input": input, **optional_params}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": {"api_key": api_key, "azure_ad_token": azure_ad_token},
},
)
if aembedding is True:
response = self.aembedding(
data=data,
input=input,
logging_obj=logging_obj,
api_key=api_key,
model_response=model_response,
azure_client_params=azure_client_params,
timeout=timeout,
client=client,
)
return response
if client is None:
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
else:
azure_client = client
## COMPLETION CALL
response = azure_client.embeddings.create(**data, timeout=timeout) # type: ignore
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
original_response=response,
)
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="embedding") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if hasattr(e, "status_code"):
raise AzureOpenAIError(status_code=e.status_code, message=str(e))
else:
raise AzureOpenAIError(status_code=500, message=str(e))
async def make_async_azure_httpx_request(
self,
client: Optional[AsyncHTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
api_version: str,
api_key: str,
data: dict,
) -> httpx.Response:
"""
Implemented for azure dall-e-2 image gen calls
Alternative to needing a custom transport implementation
"""
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
async_handler = AsyncHTTPHandler(**_params) # type: ignore
else:
async_handler = client # type: ignore
if (
"images/generations" in api_base
and api_version
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]
): # CREATE + POLL for azure dall-e-2 calls
api_base = modify_url(
original_url=api_base, new_path="/openai/images/generations:submit"
)
data.pop(
"model", None
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
response = await async_handler.post(
url=api_base,
data=json.dumps(data),
headers={
"Content-Type": "application/json",
"api-key": api_key,
},
)
if "operation-location" in response.headers:
operation_location_url = response.headers["operation-location"]
else:
raise AzureOpenAIError(status_code=500, message=response.text)
response = await async_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
await response.aread()
timeout_secs: int = 120
start_time = time.time()
if "status" not in response.json():
raise Exception(
"Expected 'status' in response. Got={}".format(response.json())
)
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
timeout_msg = {
"error": {
"code": "Timeout",
"message": "Operation polling timed out.",
}
}
raise AzureOpenAIError(
status_code=408, message="Operation polling timed out."
)
await asyncio.sleep(int(response.headers.get("retry-after") or 10))
response = await async_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
await response.aread()
if response.json()["status"] == "failed":
error_data = response.json()
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
result = response.json()["result"]
return httpx.Response(
status_code=200,
headers=response.headers,
content=json.dumps(result).encode("utf-8"),
request=httpx.Request(method="POST", url="https://api.openai.com/v1"),
)
return await async_handler.post(
url=api_base,
json=data,
headers={
"Content-Type": "application/json;",
"api-key": api_key,
},
)
def make_sync_azure_httpx_request(
self,
client: Optional[HTTPHandler],
timeout: Optional[Union[float, httpx.Timeout]],
api_base: str,
api_version: str,
api_key: str,
data: dict,
) -> httpx.Response:
"""
Implemented for azure dall-e-2 image gen calls
Alternative to needing a custom transport implementation
"""
if client is None:
_params = {}
if timeout is not None:
if isinstance(timeout, float) or isinstance(timeout, int):
_httpx_timeout = httpx.Timeout(timeout)
_params["timeout"] = _httpx_timeout
else:
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
sync_handler = HTTPHandler(**_params) # type: ignore
else:
sync_handler = client # type: ignore
if (
"images/generations" in api_base
and api_version
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
"2023-06-01-preview",
"2023-07-01-preview",
"2023-08-01-preview",
"2023-09-01-preview",
"2023-10-01-preview",
]
): # CREATE + POLL for azure dall-e-2 calls
api_base = modify_url(
original_url=api_base, new_path="/openai/images/generations:submit"
)
data.pop(
"model", None
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
response = sync_handler.post(
url=api_base,
data=json.dumps(data),
headers={
"Content-Type": "application/json",
"api-key": api_key,
},
)
if "operation-location" in response.headers:
operation_location_url = response.headers["operation-location"]
else:
raise AzureOpenAIError(status_code=500, message=response.text)
response = sync_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
response.read()
timeout_secs: int = 120
start_time = time.time()
if "status" not in response.json():
raise Exception(
"Expected 'status' in response. Got={}".format(response.json())
)
while response.json()["status"] not in ["succeeded", "failed"]:
if time.time() - start_time > timeout_secs:
raise AzureOpenAIError(
status_code=408, message="Operation polling timed out."
)
time.sleep(int(response.headers.get("retry-after") or 10))
response = sync_handler.get(
url=operation_location_url,
headers={
"api-key": api_key,
},
)
response.read()
if response.json()["status"] == "failed":
error_data = response.json()
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
result = response.json()["result"]
return httpx.Response(
status_code=200,
headers=response.headers,
content=json.dumps(result).encode("utf-8"),
request=httpx.Request(method="POST", url="https://api.openai.com/v1"),
)
return sync_handler.post(
url=api_base,
json=data,
headers={
"Content-Type": "application/json;",
"api-key": api_key,
},
)
def create_azure_base_url(
self, azure_client_params: dict, model: Optional[str]
) -> str:
api_base: str = azure_client_params.get(
"azure_endpoint", ""
) # "https://example-endpoint.openai.azure.com"
if api_base.endswith("/"):
api_base = api_base.rstrip("/")
api_version: str = azure_client_params.get("api_version", "")
if model is None:
model = ""
new_api_base = (
api_base
+ "/openai/deployments/"
+ model
+ "/images/generations"
+ "?api-version="
+ api_version
)
return new_api_base
async def aimage_generation(
self,
data: dict,
model_response: ModelResponse,
azure_client_params: dict,
api_key: str,
input: list,
client=None,
logging_obj=None,
timeout=None,
):
response: Optional[dict] = None
try:
# response = await azure_client.images.generate(**data, timeout=timeout)
api_base: str = azure_client_params.get(
"api_base", ""
) # "https://example-endpoint.openai.azure.com"
if api_base.endswith("/"):
api_base = api_base.rstrip("/")
api_version: str = azure_client_params.get("api_version", "")
img_gen_api_base = self.create_azure_base_url(
azure_client_params=azure_client_params, model=data.get("model", "")
)
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": img_gen_api_base,
"headers": {"api_key": api_key},
},
)
httpx_response: httpx.Response = await self.make_async_azure_httpx_request(
client=None,
timeout=timeout,
api_base=img_gen_api_base,
api_version=api_version,
api_key=api_key,
data=data,
)
response = httpx_response.json()
stringified_response = response
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
return convert_to_model_response_object(
response_object=stringified_response,
model_response_object=model_response,
response_type="image_generation",
)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
def image_generation(
self,
prompt: str,
timeout: float,
model: Optional[str] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
model_response: Optional[litellm.utils.ImageResponse] = None,
azure_ad_token: Optional[str] = None,
logging_obj=None,
optional_params=None,
client=None,
aimg_generation=None,
):
exception_mapping_worked = False
try:
if model and len(model) > 0:
model = model
else:
model = None
## BASE MODEL CHECK
if (
model_response is not None
and optional_params.get("base_model", None) is not None
):
model_response._hidden_params["model"] = optional_params.pop(
"base_model"
)
data = {"model": model, "prompt": prompt, **optional_params}
max_retries = data.pop("max_retries", 2)
if not isinstance(max_retries, int):
raise AzureOpenAIError(
status_code=422, message="max retries must be an int"
)
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"max_retries": max_retries,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if aimg_generation == True:
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore
return response
img_gen_api_base = self.create_azure_base_url(
azure_client_params=azure_client_params, model=data.get("model", "")
)
## LOGGING
logging_obj.pre_call(
input=data["prompt"],
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": img_gen_api_base,
"headers": {"api_key": api_key},
},
)
httpx_response: httpx.Response = self.make_sync_azure_httpx_request(
client=None,
timeout=timeout,
api_base=img_gen_api_base,
api_version=api_version or "",
api_key=api_key or "",
data=data,
)
response = httpx_response.json()
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response,
)
# return response
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore
except AzureOpenAIError as e:
exception_mapping_worked = True
raise e
except Exception as e:
if hasattr(e, "status_code"):
raise AzureOpenAIError(status_code=e.status_code, message=str(e))
else:
raise AzureOpenAIError(status_code=500, message=str(e))
def audio_transcriptions(
self,
model: str,
audio_file: BinaryIO,
optional_params: dict,
model_response: TranscriptionResponse,
timeout: float,
max_retries: int,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
client=None,
azure_ad_token: Optional[str] = None,
logging_obj=None,
atranscription: bool = False,
):
data = {"model": model, "file": audio_file, **optional_params}
# init AzureOpenAI Client
azure_client_params = {
"api_version": api_version,
"azure_endpoint": api_base,
"azure_deployment": model,
"timeout": timeout,
}
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if max_retries is not None:
azure_client_params["max_retries"] = max_retries
if atranscription == True:
return self.async_audio_transcriptions(
audio_file=audio_file,
data=data,
model_response=model_response,
timeout=timeout,
api_key=api_key,
api_base=api_base,
client=client,
azure_client_params=azure_client_params,
max_retries=max_retries,
logging_obj=logging_obj,
)
if client is None:
azure_client = AzureOpenAI(http_client=litellm.client_session, **azure_client_params) # type: ignore
else:
azure_client = client
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=azure_client.api_key,
additional_args={
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
"api_base": azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
response = azure_client.audio.transcriptions.create(
**data, timeout=timeout # type: ignore
)
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
stringified_response = TranscriptionResponse(text=response).model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
final_response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return final_response
async def async_audio_transcriptions(
self,
audio_file: BinaryIO,
data: dict,
model_response: TranscriptionResponse,
timeout: float,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
client=None,
azure_client_params=None,
max_retries=None,
logging_obj=None,
):
response = None
try:
if client is None:
async_azure_client = AsyncAzureOpenAI(
**azure_client_params,
http_client=litellm.aclient_session,
)
else:
async_azure_client = client
## LOGGING
logging_obj.pre_call(
input=f"audio_file_{uuid.uuid4()}",
api_key=async_azure_client.api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
)
response = await async_azure_client.audio.transcriptions.create(
**data, timeout=timeout
) # type: ignore
if isinstance(response, BaseModel):
stringified_response = response.model_dump()
else:
stringified_response = TranscriptionResponse(text=response).model_dump()
## LOGGING
logging_obj.post_call(
input=audio_file.name,
api_key=api_key,
additional_args={
"headers": {
"Authorization": f"Bearer {async_azure_client.api_key}"
},
"api_base": async_azure_client._base_url._uri_reference,
"atranscription": True,
"complete_input_dict": data,
},
original_response=stringified_response,
)
hidden_params = {"model": "whisper-1", "custom_llm_provider": "azure"}
response = convert_to_model_response_object(response_object=stringified_response, model_response_object=model_response, hidden_params=hidden_params, response_type="audio_transcription") # type: ignore
return response
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def audio_speech(
self,
model: str,
input: str,
voice: str,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
organization: Optional[str],
max_retries: int,
timeout: Union[float, httpx.Timeout],
azure_ad_token: Optional[str] = None,
aspeech: Optional[bool] = None,
client=None,
) -> HttpxBinaryResponseContent:
max_retries = optional_params.pop("max_retries", 2)
if aspeech is not None and aspeech is True:
return self.async_audio_speech(
model=model,
input=input,
voice=voice,
optional_params=optional_params,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
max_retries=max_retries,
timeout=timeout,
client=client,
) # type: ignore
azure_client: AzureOpenAI = self._get_sync_azure_client(
api_base=api_base,
api_version=api_version,
api_key=api_key,
azure_ad_token=azure_ad_token,
model=model,
max_retries=max_retries,
timeout=timeout,
client=client,
client_type="sync",
) # type: ignore
response = azure_client.audio.speech.create(
model=model,
voice=voice, # type: ignore
input=input,
**optional_params,
)
return response
async def async_audio_speech(
self,
model: str,
input: str,
voice: str,
optional_params: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
max_retries: int,
timeout: Union[float, httpx.Timeout],
client=None,
) -> HttpxBinaryResponseContent:
azure_client: AsyncAzureOpenAI = self._get_sync_azure_client(
api_base=api_base,
api_version=api_version,
api_key=api_key,
azure_ad_token=azure_ad_token,
model=model,
max_retries=max_retries,
timeout=timeout,
client=client,
client_type="async",
) # type: ignore
response = await azure_client.audio.speech.create(
model=model,
voice=voice, # type: ignore
input=input,
**optional_params,
)
return response
def get_headers(
self,
model: Optional[str],
api_key: str,
api_base: str,
api_version: str,
timeout: float,
mode: str,
messages: Optional[list] = None,
input: Optional[list] = None,
prompt: Optional[str] = None,
) -> dict:
client_session = litellm.client_session or httpx.Client()
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
client = AzureOpenAI(
base_url=api_base,
api_version=api_version,
api_key=api_key,
timeout=timeout,
http_client=client_session,
)
model = None
# cloudflare ai gateway, needs model=None
else:
client = AzureOpenAI(
api_version=api_version,
azure_endpoint=api_base,
api_key=api_key,
timeout=timeout,
http_client=client_session,
)
# only run this check if it's not cloudflare ai gateway
if model is None and mode != "image_generation":
raise Exception("model is not set")
completion = None
if messages is None:
messages = [{"role": "user", "content": "Hey"}]
try:
completion = client.chat.completions.with_raw_response.create(
model=model, # type: ignore
messages=messages, # type: ignore
)
except Exception as e:
raise e
response = {}
if completion is None or not hasattr(completion, "headers"):
raise Exception("invalid completion response")
if (
completion.headers.get("x-ratelimit-remaining-requests", None) is not None
): # not provided for dall-e requests
response["x-ratelimit-remaining-requests"] = completion.headers[
"x-ratelimit-remaining-requests"
]
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None:
response["x-ratelimit-remaining-tokens"] = completion.headers[
"x-ratelimit-remaining-tokens"
]
if completion.headers.get("x-ms-region", None) is not None:
response["x-ms-region"] = completion.headers["x-ms-region"]
return response
async def ahealth_check(
self,
model: Optional[str],
api_key: str,
api_base: str,
api_version: str,
timeout: float,
mode: str,
messages: Optional[list] = None,
input: Optional[list] = None,
prompt: Optional[str] = None,
) -> dict:
client_session = (
litellm.aclient_session or httpx.AsyncClient()
) # handle dall-e-2 calls
if "gateway.ai.cloudflare.com" in api_base:
## build base url - assume api base includes resource name
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
client = AsyncAzureOpenAI(
base_url=api_base,
api_version=api_version,
api_key=api_key,
timeout=timeout,
http_client=client_session,
)
model = None
# cloudflare ai gateway, needs model=None
else:
client = AsyncAzureOpenAI(
api_version=api_version,
azure_endpoint=api_base,
api_key=api_key,
timeout=timeout,
http_client=client_session,
)
# only run this check if it's not cloudflare ai gateway
if model is None and mode != "image_generation":
raise Exception("model is not set")
completion = None
if mode == "completion":
completion = await client.completions.with_raw_response.create(
model=model, # type: ignore
prompt=prompt, # type: ignore
)
elif mode == "chat":
if messages is None:
raise Exception("messages is not set")
completion = await client.chat.completions.with_raw_response.create(
model=model, # type: ignore
messages=messages, # type: ignore
)
elif mode == "embedding":
if input is None:
raise Exception("input is not set")
completion = await client.embeddings.with_raw_response.create(
model=model, # type: ignore
input=input, # type: ignore
)
elif mode == "image_generation":
if prompt is None:
raise Exception("prompt is not set")
completion = await client.images.with_raw_response.generate(
model=model, # type: ignore
prompt=prompt, # type: ignore
)
elif mode == "audio_transcription":
# Get the current directory of the file being run
pwd = os.path.dirname(os.path.realpath(__file__))
file_path = os.path.join(pwd, "../tests/gettysburg.wav")
audio_file = open(file_path, "rb")
completion = await client.audio.transcriptions.with_raw_response.create(
file=audio_file,
model=model, # type: ignore
prompt=prompt, # type: ignore
)
elif mode == "audio_speech":
# Get the current directory of the file being run
completion = await client.audio.speech.with_raw_response.create(
model=model, # type: ignore
input=prompt, # type: ignore
voice="alloy",
)
else:
raise Exception("mode not set")
response = {}
if completion is None or not hasattr(completion, "headers"):
raise Exception("invalid completion response")
if (
completion.headers.get("x-ratelimit-remaining-requests", None) is not None
): # not provided for dall-e requests
response["x-ratelimit-remaining-requests"] = completion.headers[
"x-ratelimit-remaining-requests"
]
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None:
response["x-ratelimit-remaining-tokens"] = completion.headers[
"x-ratelimit-remaining-tokens"
]
if completion.headers.get("x-ms-region", None) is not None:
response["x-ms-region"] = completion.headers["x-ms-region"]
return response
class AzureAssistantsAPI(BaseLLM):
def __init__(self) -> None:
super().__init__()
def get_azure_client(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI] = None,
) -> AzureOpenAI:
received_args = locals()
if client is None:
data = {}
for k, v in received_args.items():
if k == "self" or k == "client":
pass
elif k == "api_base" and v is not None:
data["azure_endpoint"] = v
elif v is not None:
data[k] = v
azure_openai_client = AzureOpenAI(**data) # type: ignore
else:
azure_openai_client = client
return azure_openai_client
def async_get_azure_client(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI] = None,
) -> AsyncAzureOpenAI:
received_args = locals()
if client is None:
data = {}
for k, v in received_args.items():
if k == "self" or k == "client":
pass
elif k == "api_base" and v is not None:
data["azure_endpoint"] = v
elif v is not None:
data[k] = v
azure_openai_client = AsyncAzureOpenAI(**data)
# azure_openai_client = AsyncAzureOpenAI(**data) # type: ignore
else:
azure_openai_client = client
return azure_openai_client
### ASSISTANTS ###
async def async_get_assistants(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
) -> AsyncCursorPage[Assistant]:
azure_openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
response = await azure_openai_client.beta.assistants.list()
return response
# fmt: off
@overload
def get_assistants(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
aget_assistants: Literal[True],
) -> Coroutine[None, None, AsyncCursorPage[Assistant]]:
...
@overload
def get_assistants(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI],
aget_assistants: Optional[Literal[False]],
) -> SyncCursorPage[Assistant]:
...
# fmt: on
def get_assistants(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client=None,
aget_assistants=None,
):
if aget_assistants is not None and aget_assistants == True:
return self.async_get_assistants(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
azure_openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
api_version=api_version,
)
response = azure_openai_client.beta.assistants.list()
return response
### MESSAGES ###
async def a_add_message(
self,
thread_id: str,
message_data: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI] = None,
) -> OpenAIMessage:
openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
thread_message: OpenAIMessage = await openai_client.beta.threads.messages.create( # type: ignore
thread_id, **message_data # type: ignore
)
response_obj: Optional[OpenAIMessage] = None
if getattr(thread_message, "status", None) is None:
thread_message.status = "completed"
response_obj = OpenAIMessage(**thread_message.dict())
else:
response_obj = OpenAIMessage(**thread_message.dict())
return response_obj
# fmt: off
@overload
def add_message(
self,
thread_id: str,
message_data: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
a_add_message: Literal[True],
) -> Coroutine[None, None, OpenAIMessage]:
...
@overload
def add_message(
self,
thread_id: str,
message_data: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI],
a_add_message: Optional[Literal[False]],
) -> OpenAIMessage:
...
# fmt: on
def add_message(
self,
thread_id: str,
message_data: dict,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client=None,
a_add_message: Optional[bool] = None,
):
if a_add_message is not None and a_add_message == True:
return self.a_add_message(
thread_id=thread_id,
message_data=message_data,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
thread_message: OpenAIMessage = openai_client.beta.threads.messages.create( # type: ignore
thread_id, **message_data # type: ignore
)
response_obj: Optional[OpenAIMessage] = None
if getattr(thread_message, "status", None) is None:
thread_message.status = "completed"
response_obj = OpenAIMessage(**thread_message.dict())
else:
response_obj = OpenAIMessage(**thread_message.dict())
return response_obj
async def async_get_messages(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI] = None,
) -> AsyncCursorPage[OpenAIMessage]:
openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
response = await openai_client.beta.threads.messages.list(thread_id=thread_id)
return response
# fmt: off
@overload
def get_messages(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
aget_messages: Literal[True],
) -> Coroutine[None, None, AsyncCursorPage[OpenAIMessage]]:
...
@overload
def get_messages(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI],
aget_messages: Optional[Literal[False]],
) -> SyncCursorPage[OpenAIMessage]:
...
# fmt: on
def get_messages(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client=None,
aget_messages=None,
):
if aget_messages is not None and aget_messages == True:
return self.async_get_messages(
thread_id=thread_id,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
response = openai_client.beta.threads.messages.list(thread_id=thread_id)
return response
### THREADS ###
async def async_create_thread(
self,
metadata: Optional[dict],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]],
) -> Thread:
openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
data = {}
if messages is not None:
data["messages"] = messages # type: ignore
if metadata is not None:
data["metadata"] = metadata # type: ignore
message_thread = await openai_client.beta.threads.create(**data) # type: ignore
return Thread(**message_thread.dict())
# fmt: off
@overload
def create_thread(
self,
metadata: Optional[dict],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]],
client: Optional[AsyncAzureOpenAI],
acreate_thread: Literal[True],
) -> Coroutine[None, None, Thread]:
...
@overload
def create_thread(
self,
metadata: Optional[dict],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]],
client: Optional[AzureOpenAI],
acreate_thread: Optional[Literal[False]],
) -> Thread:
...
# fmt: on
def create_thread(
self,
metadata: Optional[dict],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]],
client=None,
acreate_thread=None,
):
"""
Here's an example:
```
from litellm.llms.openai import OpenAIAssistantsAPI, MessageData
# create thread
message: MessageData = {"role": "user", "content": "Hey, how's it going?"}
openai_api.create_thread(messages=[message])
```
"""
if acreate_thread is not None and acreate_thread == True:
return self.async_create_thread(
metadata=metadata,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
messages=messages,
)
azure_openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
data = {}
if messages is not None:
data["messages"] = messages # type: ignore
if metadata is not None:
data["metadata"] = metadata # type: ignore
message_thread = azure_openai_client.beta.threads.create(**data) # type: ignore
return Thread(**message_thread.dict())
async def async_get_thread(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
) -> Thread:
openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
response = await openai_client.beta.threads.retrieve(thread_id=thread_id)
return Thread(**response.dict())
# fmt: off
@overload
def get_thread(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
aget_thread: Literal[True],
) -> Coroutine[None, None, Thread]:
...
@overload
def get_thread(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI],
aget_thread: Optional[Literal[False]],
) -> Thread:
...
# fmt: on
def get_thread(
self,
thread_id: str,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client=None,
aget_thread=None,
):
if aget_thread is not None and aget_thread == True:
return self.async_get_thread(
thread_id=thread_id,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
response = openai_client.beta.threads.retrieve(thread_id=thread_id)
return Thread(**response.dict())
# def delete_thread(self):
# pass
### RUNS ###
async def arun_thread(
self,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
stream: Optional[bool],
tools: Optional[Iterable[AssistantToolParam]],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
) -> Run:
openai_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
timeout=timeout,
max_retries=max_retries,
api_version=api_version,
azure_ad_token=azure_ad_token,
client=client,
)
response = await openai_client.beta.threads.runs.create_and_poll( # type: ignore
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
tools=tools,
)
return response
def async_run_thread_stream(
self,
client: AsyncAzureOpenAI,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
tools: Optional[Iterable[AssistantToolParam]],
event_handler: Optional[AssistantEventHandler],
) -> AsyncAssistantStreamManager[AsyncAssistantEventHandler]:
data = {
"thread_id": thread_id,
"assistant_id": assistant_id,
"additional_instructions": additional_instructions,
"instructions": instructions,
"metadata": metadata,
"model": model,
"tools": tools,
}
if event_handler is not None:
data["event_handler"] = event_handler
return client.beta.threads.runs.stream(**data) # type: ignore
def run_thread_stream(
self,
client: AzureOpenAI,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
tools: Optional[Iterable[AssistantToolParam]],
event_handler: Optional[AssistantEventHandler],
) -> AssistantStreamManager[AssistantEventHandler]:
data = {
"thread_id": thread_id,
"assistant_id": assistant_id,
"additional_instructions": additional_instructions,
"instructions": instructions,
"metadata": metadata,
"model": model,
"tools": tools,
}
if event_handler is not None:
data["event_handler"] = event_handler
return client.beta.threads.runs.stream(**data) # type: ignore
# fmt: off
@overload
def run_thread(
self,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
stream: Optional[bool],
tools: Optional[Iterable[AssistantToolParam]],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AsyncAzureOpenAI],
arun_thread: Literal[True],
) -> Coroutine[None, None, Run]:
...
@overload
def run_thread(
self,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
stream: Optional[bool],
tools: Optional[Iterable[AssistantToolParam]],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client: Optional[AzureOpenAI],
arun_thread: Optional[Literal[False]],
) -> Run:
...
# fmt: on
def run_thread(
self,
thread_id: str,
assistant_id: str,
additional_instructions: Optional[str],
instructions: Optional[str],
metadata: Optional[object],
model: Optional[str],
stream: Optional[bool],
tools: Optional[Iterable[AssistantToolParam]],
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str],
azure_ad_token: Optional[str],
timeout: Union[float, httpx.Timeout],
max_retries: Optional[int],
client=None,
arun_thread=None,
event_handler: Optional[AssistantEventHandler] = None,
):
if arun_thread is not None and arun_thread == True:
if stream is not None and stream == True:
azure_client = self.async_get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
return self.async_run_thread_stream(
client=azure_client,
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
tools=tools,
event_handler=event_handler,
)
return self.arun_thread(
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
stream=stream,
tools=tools,
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
openai_client = self.get_azure_client(
api_key=api_key,
api_base=api_base,
api_version=api_version,
azure_ad_token=azure_ad_token,
timeout=timeout,
max_retries=max_retries,
client=client,
)
if stream is not None and stream == True:
return self.run_thread_stream(
client=openai_client,
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
tools=tools,
event_handler=event_handler,
)
response = openai_client.beta.threads.runs.create_and_poll( # type: ignore
thread_id=thread_id,
assistant_id=assistant_id,
additional_instructions=additional_instructions,
instructions=instructions,
metadata=metadata,
model=model,
tools=tools,
)
return response