litellm/litellm/llms/databricks.py
2024-08-01 15:15:45 -07:00

746 lines
25 KiB
Python

# What is this?
## Handler file for databricks API https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
import copy
import json
import os
import time
import types
from enum import Enum
from functools import partial
from typing import Callable, List, Literal, Optional, Tuple, Union
import httpx # type: ignore
import requests # type: ignore
import litellm
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.llms.openai import (
ChatCompletionDeltaChunk,
ChatCompletionResponseMessage,
ChatCompletionToolCallChunk,
ChatCompletionToolCallFunctionChunk,
ChatCompletionUsageBlock,
)
from litellm.types.utils import GenericStreamingChunk, ProviderField
from litellm.utils import CustomStreamWrapper, EmbeddingResponse, ModelResponse, Usage
from .base import BaseLLM
from .prompt_templates.factory import custom_prompt, prompt_factory
class DatabricksError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(method="POST", url="https://docs.databricks.com/")
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class DatabricksConfig:
"""
Reference: https://docs.databricks.com/en/machine-learning/foundation-models/api-reference.html#chat-request
"""
max_tokens: Optional[int] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
stop: Optional[Union[List[str], str]] = None
n: Optional[int] = None
def __init__(
self,
max_tokens: Optional[int] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
stop: Optional[Union[List[str], str]] = None,
n: Optional[int] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_required_params(self) -> List[ProviderField]:
"""For a given provider, return it's required fields with a description"""
return [
ProviderField(
field_name="api_key",
field_type="string",
field_description="Your Databricks API Key.",
field_value="dapi...",
),
ProviderField(
field_name="api_base",
field_type="string",
field_description="Your Databricks API Base.",
field_value="https://adb-..",
),
]
def get_supported_openai_params(self):
return ["stream", "stop", "temperature", "top_p", "max_tokens", "n"]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "n":
optional_params["n"] = value
if param == "stream" and value == True:
optional_params["stream"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
if param == "stop":
optional_params["stop"] = value
return optional_params
class DatabricksEmbeddingConfig:
"""
Reference: https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/api-reference#--embedding-task
"""
instruction: Optional[str] = (
None # An optional instruction to pass to the embedding model. BGE Authors recommend 'Represent this sentence for searching relevant passages:' for retrieval queries
)
def __init__(self, instruction: Optional[str] = None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(
self,
): # no optional openai embedding params supported
return []
def map_openai_params(self, non_default_params: dict, optional_params: dict):
return optional_params
async def make_call(
client: AsyncHTTPHandler,
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
):
response = await client.post(api_base, headers=headers, data=data, stream=True)
if response.status_code != 200:
raise DatabricksError(status_code=response.status_code, message=response.text)
completion_stream = ModelResponseIterator(
streaming_response=response.aiter_lines(), sync_stream=False
)
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_stream, # Pass the completion stream for logging
additional_args={"complete_input_dict": data},
)
return completion_stream
def make_sync_call(
client: Optional[HTTPHandler],
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
):
if client is None:
client = HTTPHandler() # Create a new client if none provided
response = client.post(api_base, headers=headers, data=data, stream=True)
if response.status_code != 200:
raise DatabricksError(status_code=response.status_code, message=response.read())
completion_stream = ModelResponseIterator(
streaming_response=response.iter_lines(), sync_stream=True
)
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response="first stream response received",
additional_args={"complete_input_dict": data},
)
return completion_stream
class DatabricksChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
# makes headers for API call
def _validate_environment(
self,
api_key: Optional[str],
api_base: Optional[str],
endpoint_type: Literal["chat_completions", "embeddings"],
custom_endpoint: Optional[bool],
) -> Tuple[str, dict]:
if api_key is None:
raise DatabricksError(
status_code=400,
message="Missing Databricks API Key - A call is being made to Databricks but no key is set either in the environment variables (DATABRICKS_API_KEY) or via params",
)
if api_base is None:
raise DatabricksError(
status_code=400,
message="Missing Databricks API Base - A call is being made to Databricks but no api base is set either in the environment variables (DATABRICKS_API_BASE) or via params",
)
headers = {
"Authorization": "Bearer {}".format(api_key),
"Content-Type": "application/json",
}
if endpoint_type == "chat_completions" and custom_endpoint is not True:
api_base = "{}/chat/completions".format(api_base)
elif endpoint_type == "embeddings" and custom_endpoint is not True:
api_base = "{}/embeddings".format(api_base)
return api_base, headers
async def acompletion_stream_function(
self,
model: str,
messages: list,
custom_llm_provider: str,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
client: Optional[AsyncHTTPHandler] = None,
) -> CustomStreamWrapper:
data["stream"] = True
streamwrapper = CustomStreamWrapper(
completion_stream=None,
make_call=partial(
make_call,
api_base=api_base,
headers=headers,
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
),
model=model,
custom_llm_provider=custom_llm_provider,
logging_obj=logging_obj,
)
return streamwrapper
async def acompletion_function(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
data: dict,
base_model: Optional[str],
optional_params: dict,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
) -> ModelResponse:
if timeout is None:
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
self.async_handler = AsyncHTTPHandler(timeout=timeout)
try:
response = await self.async_handler.post(
api_base, headers=headers, data=json.dumps(data)
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=e.response.text,
)
except httpx.TimeoutException as e:
raise DatabricksError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
response = ModelResponse(**response_json)
if base_model is not None:
response._hidden_params["model"] = base_model
return response
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_llm_provider: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
custom_endpoint: Optional[bool] = optional_params.pop("custom_endpoint", None)
base_model: Optional[str] = optional_params.pop("base_model", None)
api_base, headers = self._validate_environment(
api_base=api_base,
api_key=api_key,
endpoint_type="chat_completions",
custom_endpoint=custom_endpoint,
)
## Load Config
config = litellm.DatabricksConfig().get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
stream: bool = optional_params.pop("stream", None) or False
optional_params["stream"] = stream
data = {
"model": model,
"messages": messages,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": api_base,
"headers": headers,
},
)
if acompletion is True:
if client is not None and isinstance(client, HTTPHandler):
client = None
if (
stream is not None and stream is True
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
print_verbose("makes async anthropic streaming POST request")
data["stream"] = stream
return self.acompletion_stream_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
client=client,
custom_llm_provider=custom_llm_provider,
)
else:
return self.acompletion_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
base_model=base_model,
)
else:
if client is None or not isinstance(client, HTTPHandler):
client = HTTPHandler(timeout=timeout) # type: ignore
## COMPLETION CALL
if stream is True:
return CustomStreamWrapper(
completion_stream=None,
make_call=partial(
make_sync_call,
client=None,
api_base=api_base,
headers=headers, # type: ignore
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
),
model=model,
custom_llm_provider=custom_llm_provider,
logging_obj=logging_obj,
)
else:
try:
response = client.post(
api_base, headers=headers, data=json.dumps(data)
)
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code, message=response.text
)
except httpx.TimeoutException as e:
raise DatabricksError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
response = ModelResponse(**response_json)
if base_model is not None:
response._hidden_params["model"] = base_model
return response
async def aembedding(
self,
input: list,
data: dict,
model_response: ModelResponse,
timeout: float,
api_key: str,
api_base: str,
logging_obj,
headers: dict,
client=None,
) -> EmbeddingResponse:
response = None
try:
if client is None or isinstance(client, AsyncHTTPHandler):
self.async_client = AsyncHTTPHandler(timeout=timeout) # type: ignore
else:
self.async_client = client
try:
response = await self.async_client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status()
response_json = response.json()
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=response.text if response else str(e),
)
except httpx.TimeoutException as e:
raise DatabricksError(
status_code=408, message="Timeout error occurred."
)
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return EmbeddingResponse(**response_json)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
original_response=str(e),
)
raise e
def embedding(
self,
model: str,
input: list,
timeout: float,
logging_obj,
api_key: Optional[str],
api_base: Optional[str],
optional_params: dict,
model_response: Optional[litellm.utils.EmbeddingResponse] = None,
client=None,
aembedding=None,
) -> EmbeddingResponse:
api_base, headers = self._validate_environment(
api_base=api_base,
api_key=api_key,
endpoint_type="embeddings",
custom_endpoint=False,
)
model = model
data = {"model": model, "input": input, **optional_params}
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data, "api_base": api_base},
)
if aembedding == True:
return self.aembedding(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_base=api_base, api_key=api_key, timeout=timeout, client=client, headers=headers) # type: ignore
if client is None or isinstance(client, AsyncHTTPHandler):
self.client = HTTPHandler(timeout=timeout) # type: ignore
else:
self.client = client
## EMBEDDING CALL
try:
response = self.client.post(
api_base,
headers=headers,
data=json.dumps(data),
) # type: ignore
response.raise_for_status() # type: ignore
response_json = response.json() # type: ignore
except httpx.HTTPStatusError as e:
raise DatabricksError(
status_code=e.response.status_code,
message=response.text if response else str(e),
)
except httpx.TimeoutException as e:
raise DatabricksError(status_code=408, message="Timeout error occurred.")
except Exception as e:
raise DatabricksError(status_code=500, message=str(e))
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=response_json,
)
return litellm.EmbeddingResponse(**response_json)
class ModelResponseIterator:
def __init__(self, streaming_response, sync_stream: bool):
self.streaming_response = streaming_response
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
try:
processed_chunk = litellm.ModelResponse(**chunk, stream=True) # type: ignore
text = ""
tool_use: Optional[ChatCompletionToolCallChunk] = None
is_finished = False
finish_reason = ""
usage: Optional[ChatCompletionUsageBlock] = None
if processed_chunk.choices[0].delta.content is not None: # type: ignore
text = processed_chunk.choices[0].delta.content # type: ignore
if (
processed_chunk.choices[0].delta.tool_calls is not None # type: ignore
and len(processed_chunk.choices[0].delta.tool_calls) > 0 # type: ignore
and processed_chunk.choices[0].delta.tool_calls[0].function is not None # type: ignore
and processed_chunk.choices[0].delta.tool_calls[0].function.arguments # type: ignore
is not None
):
tool_use = ChatCompletionToolCallChunk(
id=processed_chunk.choices[0].delta.tool_calls[0].id, # type: ignore
type="function",
function=ChatCompletionToolCallFunctionChunk(
name=processed_chunk.choices[0]
.delta.tool_calls[0] # type: ignore
.function.name,
arguments=processed_chunk.choices[0]
.delta.tool_calls[0] # type: ignore
.function.arguments,
),
index=processed_chunk.choices[0].index,
)
if processed_chunk.choices[0].finish_reason is not None:
is_finished = True
finish_reason = processed_chunk.choices[0].finish_reason
if hasattr(processed_chunk, "usage"):
usage = processed_chunk.usage # type: ignore
return GenericStreamingChunk(
text=text,
tool_use=tool_use,
is_finished=is_finished,
finish_reason=finish_reason,
usage=usage,
index=0,
)
except json.JSONDecodeError:
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
# Sync iterator
def __iter__(self):
self.response_iterator = self.streaming_response
return self
def __next__(self):
try:
chunk = self.response_iterator.__next__()
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
chunk = chunk.replace("data:", "")
chunk = chunk.strip()
if len(chunk) > 0:
json_chunk = json.loads(chunk)
return self.chunk_parser(chunk=json_chunk)
else:
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="",
usage=None,
index=0,
tool_use=None,
)
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
# Async iterator
def __aiter__(self):
self.async_response_iterator = self.streaming_response.__aiter__()
return self
async def __anext__(self):
try:
chunk = await self.async_response_iterator.__anext__()
except StopAsyncIteration:
raise StopAsyncIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
chunk = chunk.replace("data:", "")
chunk = chunk.strip()
if chunk == "[DONE]":
raise StopAsyncIteration
if len(chunk) > 0:
json_chunk = json.loads(chunk)
return self.chunk_parser(chunk=json_chunk)
else:
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="",
usage=None,
index=0,
tool_use=None,
)
except StopAsyncIteration:
raise StopAsyncIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")