forked from phoenix/litellm-mirror
* refactor(vertex_ai_partner_models/anthropic): refactor anthropic to use partner model logic * fix(vertex_ai/): support passing custom api base to partner models Fixes https://github.com/BerriAI/litellm/issues/4317 * fix(proxy_server.py): Fix prometheus premium user check logic * docs(prometheus.md): update quick start docs * fix(custom_llm.py): support passing dynamic api key + api base * fix(realtime_api/main.py): Add request/response logging for realtime api endpoints Closes https://github.com/BerriAI/litellm/issues/6081 * feat(openai/realtime): add openai realtime api logging Closes https://github.com/BerriAI/litellm/issues/6081 * fix(realtime_streaming.py): fix linting errors * fix(realtime_streaming.py): fix linting errors * fix: fix linting errors * fix pattern match router * Add literalai in the sidebar observability category (#6163) * fix: add literalai in the sidebar * fix: typo * update (#6160) * Feat: Add Langtrace integration (#5341) * Feat: Add Langtrace integration * add langtrace service name * fix timestamps for traces * add tests * Discard Callback + use existing otel logger * cleanup * remove print statments * remove callback * add docs * docs * add logging docs * format logging * remove emoji and add litellm proxy example * format logging * format `logging.md` * add langtrace docs to logging.md * sync conflict * docs fix * (perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165) * fix move s3 to use customLogger * add basic s3 logging test * add s3 to custom logger compatible * use batch logger for s3 * s3 set flush interval and batch size * fix s3 logging * add notes on s3 logging * fix s3 logging * add basic s3 logging test * fix s3 type errors * add test for sync logging on s3 * fix: fix to debug log --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Willy Douhard <willy.douhard@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> Co-authored-by: Ali Waleed <ali@scale3labs.com>
3050 lines
108 KiB
Python
3050 lines
108 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
|
|
from test_streaming import streaming_format_tests
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import asyncio
|
|
import json
|
|
import os
|
|
import tempfile
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import (
|
|
RateLimitError,
|
|
Timeout,
|
|
acompletion,
|
|
completion,
|
|
completion_cost,
|
|
embedding,
|
|
)
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
_gemini_convert_messages_with_history,
|
|
)
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_llm_base import VertexBase
|
|
|
|
|
|
litellm.num_retries = 3
|
|
litellm.cache = None
|
|
user_message = "Write a short poem about the sky"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
|
|
VERTEX_MODELS_TO_NOT_TEST = [
|
|
"medlm-medium",
|
|
"medlm-large",
|
|
"code-gecko",
|
|
"code-gecko@001",
|
|
"code-gecko@002",
|
|
"code-gecko@latest",
|
|
"codechat-bison@latest",
|
|
"code-bison@001",
|
|
"text-bison@001",
|
|
"gemini-1.5-pro",
|
|
"gemini-1.5-pro-preview-0215",
|
|
"gemini-pro-experimental",
|
|
"gemini-flash-experimental",
|
|
"gemini-1.5-flash-exp-0827",
|
|
"gemini-pro-flash",
|
|
"gemini-1.5-flash-exp-0827",
|
|
]
|
|
|
|
|
|
def get_vertex_ai_creds_json() -> dict:
|
|
# Define the path to the vertex_key.json file
|
|
print("loading vertex ai credentials")
|
|
filepath = os.path.dirname(os.path.abspath(__file__))
|
|
vertex_key_path = filepath + "/vertex_key.json"
|
|
# Read the existing content of the file or create an empty dictionary
|
|
try:
|
|
with open(vertex_key_path, "r") as file:
|
|
# Read the file content
|
|
print("Read vertexai file path")
|
|
content = file.read()
|
|
|
|
# If the file is empty or not valid JSON, create an empty dictionary
|
|
if not content or not content.strip():
|
|
service_account_key_data = {}
|
|
else:
|
|
# Attempt to load the existing JSON content
|
|
file.seek(0)
|
|
service_account_key_data = json.load(file)
|
|
except FileNotFoundError:
|
|
# If the file doesn't exist, create an empty dictionary
|
|
service_account_key_data = {}
|
|
|
|
# Update the service_account_key_data with environment variables
|
|
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
|
|
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
|
|
private_key = private_key.replace("\\n", "\n")
|
|
service_account_key_data["private_key_id"] = private_key_id
|
|
service_account_key_data["private_key"] = private_key
|
|
|
|
return service_account_key_data
|
|
|
|
|
|
def load_vertex_ai_credentials():
|
|
# Define the path to the vertex_key.json file
|
|
print("loading vertex ai credentials")
|
|
filepath = os.path.dirname(os.path.abspath(__file__))
|
|
vertex_key_path = filepath + "/vertex_key.json"
|
|
|
|
# Read the existing content of the file or create an empty dictionary
|
|
try:
|
|
with open(vertex_key_path, "r") as file:
|
|
# Read the file content
|
|
print("Read vertexai file path")
|
|
content = file.read()
|
|
|
|
# If the file is empty or not valid JSON, create an empty dictionary
|
|
if not content or not content.strip():
|
|
service_account_key_data = {}
|
|
else:
|
|
# Attempt to load the existing JSON content
|
|
file.seek(0)
|
|
service_account_key_data = json.load(file)
|
|
except FileNotFoundError:
|
|
# If the file doesn't exist, create an empty dictionary
|
|
service_account_key_data = {}
|
|
|
|
# Update the service_account_key_data with environment variables
|
|
private_key_id = os.environ.get("VERTEX_AI_PRIVATE_KEY_ID", "")
|
|
private_key = os.environ.get("VERTEX_AI_PRIVATE_KEY", "")
|
|
private_key = private_key.replace("\\n", "\n")
|
|
service_account_key_data["private_key_id"] = private_key_id
|
|
service_account_key_data["private_key"] = private_key
|
|
|
|
# Create a temporary file
|
|
with tempfile.NamedTemporaryFile(mode="w+", delete=False) as temp_file:
|
|
# Write the updated content to the temporary files
|
|
json.dump(service_account_key_data, temp_file, indent=2)
|
|
|
|
# Export the temporary file as GOOGLE_APPLICATION_CREDENTIALS
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = os.path.abspath(temp_file.name)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_get_response():
|
|
load_vertex_ai_credentials()
|
|
prompt = '\ndef count_nums(arr):\n """\n Write a function count_nums which takes an array of integers and returns\n the number of elements which has a sum of digits > 0.\n If a number is negative, then its first signed digit will be negative:\n e.g. -123 has signed digits -1, 2, and 3.\n >>> count_nums([]) == 0\n >>> count_nums([-1, 11, -11]) == 1\n >>> count_nums([1, 1, 2]) == 3\n """\n'
|
|
try:
|
|
response = await acompletion(
|
|
model="gemini-pro",
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "Complete the given code with no more explanation. Remember that there is a 4-space indent before the first line of your generated code.",
|
|
},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
)
|
|
return response
|
|
except litellm.RateLimitError:
|
|
pass
|
|
except litellm.UnprocessableEntityError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An error occurred - {str(e)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_get_router_response():
|
|
model = "claude-3-sonnet@20240229"
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "asia-southeast1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
prompt = '\ndef count_nums(arr):\n """\n Write a function count_nums which takes an array of integers and returns\n the number of elements which has a sum of digits > 0.\n If a number is negative, then its first signed digit will be negative:\n e.g. -123 has signed digits -1, 2, and 3.\n >>> count_nums([]) == 0\n >>> count_nums([-1, 11, -11]) == 1\n >>> count_nums([1, 1, 2]) == 3\n """\n'
|
|
try:
|
|
router = litellm.Router(
|
|
model_list=[
|
|
{
|
|
"model_name": "sonnet",
|
|
"litellm_params": {
|
|
"model": "vertex_ai/claude-3-sonnet@20240229",
|
|
"vertex_ai_project": vertex_ai_project,
|
|
"vertex_ai_location": vertex_ai_location,
|
|
"vertex_credentials": vertex_credentials,
|
|
},
|
|
}
|
|
]
|
|
)
|
|
response = await router.acompletion(
|
|
model="sonnet",
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": "Complete the given code with no more explanation. Remember that there is a 4-space indent before the first line of your generated code.",
|
|
},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
)
|
|
|
|
print(f"\n\nResponse: {response}\n\n")
|
|
|
|
except litellm.UnprocessableEntityError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An error occurred - {str(e)}")
|
|
|
|
|
|
# @pytest.mark.skip(
|
|
# reason="Local test. Vertex AI Quota is low. Leads to rate limit errors on ci/cd."
|
|
# )
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_vertex_ai_anthropic():
|
|
model = "claude-3-sonnet@20240229"
|
|
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "asia-southeast1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
response = completion(
|
|
model="vertex_ai/" + model,
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
temperature=0.7,
|
|
vertex_ai_project=vertex_ai_project,
|
|
vertex_ai_location=vertex_ai_location,
|
|
vertex_credentials=vertex_credentials,
|
|
)
|
|
print("\nModel Response", response)
|
|
|
|
|
|
# @pytest.mark.skip(
|
|
# reason="Local test. Vertex AI Quota is low. Leads to rate limit errors on ci/cd."
|
|
# )
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_vertex_ai_anthropic_streaming():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
|
|
# litellm.set_verbose = True
|
|
|
|
model = "claude-3-sonnet@20240229"
|
|
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "asia-southeast1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
response = completion(
|
|
model="vertex_ai/" + model,
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
temperature=0.7,
|
|
vertex_ai_project=vertex_ai_project,
|
|
vertex_ai_location=vertex_ai_location,
|
|
stream=True,
|
|
)
|
|
# print("\nModel Response", response)
|
|
for idx, chunk in enumerate(response):
|
|
print(f"chunk: {chunk}")
|
|
streaming_format_tests(idx=idx, chunk=chunk)
|
|
|
|
# raise Exception("it worked!")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_vertex_ai_anthropic_streaming()
|
|
|
|
|
|
# @pytest.mark.skip(
|
|
# reason="Local test. Vertex AI Quota is low. Leads to rate limit errors on ci/cd."
|
|
# )
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_vertex_ai_anthropic_async():
|
|
# load_vertex_ai_credentials()
|
|
try:
|
|
|
|
model = "claude-3-sonnet@20240229"
|
|
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "asia-southeast1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
response = await acompletion(
|
|
model="vertex_ai/" + model,
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
temperature=0.7,
|
|
vertex_ai_project=vertex_ai_project,
|
|
vertex_ai_location=vertex_ai_location,
|
|
vertex_credentials=vertex_credentials,
|
|
)
|
|
print(f"Model Response: {response}")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# asyncio.run(test_vertex_ai_anthropic_async())
|
|
|
|
|
|
# @pytest.mark.skip(
|
|
# reason="Local test. Vertex AI Quota is low. Leads to rate limit errors on ci/cd."
|
|
# )
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_vertex_ai_anthropic_async_streaming():
|
|
# load_vertex_ai_credentials()
|
|
try:
|
|
litellm.set_verbose = True
|
|
model = "claude-3-sonnet@20240229"
|
|
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "asia-southeast1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
response = await acompletion(
|
|
model="vertex_ai/" + model,
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
temperature=0.7,
|
|
vertex_ai_project=vertex_ai_project,
|
|
vertex_ai_location=vertex_ai_location,
|
|
vertex_credentials=vertex_credentials,
|
|
stream=True,
|
|
)
|
|
|
|
idx = 0
|
|
async for chunk in response:
|
|
streaming_format_tests(idx=idx, chunk=chunk)
|
|
idx += 1
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# asyncio.run(test_vertex_ai_anthropic_async_streaming())
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_vertex_ai():
|
|
import random
|
|
|
|
litellm.num_retries = 3
|
|
load_vertex_ai_credentials()
|
|
test_models = (
|
|
litellm.vertex_chat_models
|
|
+ litellm.vertex_code_chat_models
|
|
+ litellm.vertex_text_models
|
|
+ litellm.vertex_code_text_models
|
|
)
|
|
litellm.set_verbose = False
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
# litellm.vertex_project = "adroit-crow-413218"
|
|
|
|
test_models = random.sample(test_models, 1)
|
|
test_models += litellm.vertex_language_models # always test gemini-pro
|
|
for model in test_models:
|
|
try:
|
|
if model in VERTEX_MODELS_TO_NOT_TEST or (
|
|
"gecko" in model or "32k" in model or "ultra" in model or "002" in model
|
|
):
|
|
# our account does not have access to this model
|
|
continue
|
|
print("making request", model)
|
|
response = completion(
|
|
model=model,
|
|
messages=[{"role": "user", "content": "hi"}],
|
|
temperature=0.7,
|
|
vertex_ai_project=vertex_ai_project,
|
|
)
|
|
print("\nModel Response", response)
|
|
print(response)
|
|
assert type(response.choices[0].message.content) == str
|
|
assert len(response.choices[0].message.content) > 1
|
|
print(
|
|
f"response.choices[0].finish_reason: {response.choices[0].finish_reason}"
|
|
)
|
|
assert response.choices[0].finish_reason in litellm._openai_finish_reasons
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_vertex_ai()
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_vertex_ai_stream():
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
litellm.vertex_project = "adroit-crow-413218"
|
|
import random
|
|
|
|
test_models = (
|
|
litellm.vertex_chat_models
|
|
+ litellm.vertex_code_chat_models
|
|
+ litellm.vertex_text_models
|
|
+ litellm.vertex_code_text_models
|
|
)
|
|
test_models = random.sample(test_models, 1)
|
|
test_models += litellm.vertex_language_models # always test gemini-pro
|
|
for model in test_models:
|
|
try:
|
|
if model in VERTEX_MODELS_TO_NOT_TEST or (
|
|
"gecko" in model or "32k" in model or "ultra" in model or "002" in model
|
|
):
|
|
# our account does not have access to this model
|
|
continue
|
|
print("making request", model)
|
|
response = completion(
|
|
model=model,
|
|
messages=[{"role": "user", "content": "hello tell me a short story"}],
|
|
max_tokens=15,
|
|
stream=True,
|
|
)
|
|
completed_str = ""
|
|
for chunk in response:
|
|
print(chunk)
|
|
content = chunk.choices[0].delta.content or ""
|
|
print("\n content", content)
|
|
completed_str += content
|
|
assert type(content) == str
|
|
# pass
|
|
assert len(completed_str) > 1
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_vertex_ai_stream()
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
@pytest.mark.asyncio
|
|
async def test_async_vertexai_response():
|
|
import random
|
|
|
|
load_vertex_ai_credentials()
|
|
test_models = (
|
|
litellm.vertex_chat_models
|
|
+ litellm.vertex_code_chat_models
|
|
+ litellm.vertex_text_models
|
|
+ litellm.vertex_code_text_models
|
|
)
|
|
test_models = random.sample(test_models, 1)
|
|
test_models += litellm.vertex_language_models # always test gemini-pro
|
|
for model in test_models:
|
|
print(
|
|
f"model being tested in async call: {model}, litellm.vertex_language_models: {litellm.vertex_language_models}"
|
|
)
|
|
if model in VERTEX_MODELS_TO_NOT_TEST or (
|
|
"gecko" in model or "32k" in model or "ultra" in model or "002" in model
|
|
):
|
|
# our account does not have access to this model
|
|
continue
|
|
try:
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
response = await acompletion(
|
|
model=model, messages=messages, temperature=0.7, timeout=5
|
|
)
|
|
print(f"response: {response}")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except litellm.APIError as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
|
|
|
|
# asyncio.run(test_async_vertexai_response())
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
@pytest.mark.asyncio
|
|
async def test_async_vertexai_streaming_response():
|
|
import random
|
|
|
|
load_vertex_ai_credentials()
|
|
test_models = (
|
|
litellm.vertex_chat_models
|
|
+ litellm.vertex_code_chat_models
|
|
+ litellm.vertex_text_models
|
|
+ litellm.vertex_code_text_models
|
|
)
|
|
test_models = random.sample(test_models, 1)
|
|
test_models += litellm.vertex_language_models # always test gemini-pro
|
|
for model in test_models:
|
|
if model in VERTEX_MODELS_TO_NOT_TEST or (
|
|
"gecko" in model or "32k" in model or "ultra" in model or "002" in model
|
|
):
|
|
# our account does not have access to this model
|
|
continue
|
|
try:
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
response = await acompletion(
|
|
model=model,
|
|
messages=messages,
|
|
temperature=0.7,
|
|
timeout=5,
|
|
stream=True,
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
async for chunk in response:
|
|
print(f"chunk: {chunk}")
|
|
if chunk.choices[0].delta.content is not None:
|
|
complete_response += chunk.choices[0].delta.content
|
|
print(f"complete_response: {complete_response}")
|
|
assert len(complete_response) > 0
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.APIConnectionError:
|
|
pass
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
print(e)
|
|
pytest.fail(f"An exception occurred: {e}")
|
|
|
|
|
|
# asyncio.run(test_async_vertexai_streaming_response())
|
|
|
|
|
|
@pytest.mark.parametrize("provider", ["vertex_ai"]) # "vertex_ai_beta"
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
@pytest.mark.asyncio
|
|
async def test_gemini_pro_vision(provider, sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
litellm.num_retries = 3
|
|
if sync_mode:
|
|
resp = litellm.completion(
|
|
model="{}/gemini-1.5-flash-preview-0514".format(provider),
|
|
messages=[
|
|
{"role": "system", "content": "Be a good bot"},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "Whats in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "gs://cloud-samples-data/generative-ai/image/boats.jpeg"
|
|
},
|
|
},
|
|
],
|
|
},
|
|
],
|
|
)
|
|
else:
|
|
resp = await litellm.acompletion(
|
|
model="{}/gemini-1.5-flash-preview-0514".format(provider),
|
|
messages=[
|
|
{"role": "system", "content": "Be a good bot"},
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "Whats in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "gs://cloud-samples-data/generative-ai/image/boats.jpeg"
|
|
},
|
|
},
|
|
],
|
|
},
|
|
],
|
|
)
|
|
print(resp)
|
|
|
|
prompt_tokens = resp.usage.prompt_tokens
|
|
|
|
# DO Not DELETE this ASSERT
|
|
# Google counts the prompt tokens for us, we should ensure we use the tokens from the orignal response
|
|
assert prompt_tokens == 267 # the gemini api returns 267 to us
|
|
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "500 Internal error encountered.'" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# test_gemini_pro_vision()
|
|
|
|
|
|
@pytest.mark.parametrize("load_pdf", [False]) # True,
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_completion_function_plus_pdf(load_pdf):
|
|
litellm.set_verbose = True
|
|
load_vertex_ai_credentials()
|
|
try:
|
|
import base64
|
|
|
|
import requests
|
|
|
|
# URL of the file
|
|
url = "https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
|
|
|
|
# Download the file
|
|
if load_pdf:
|
|
response = requests.get(url)
|
|
file_data = response.content
|
|
|
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
|
url = f"data:application/pdf;base64,{encoded_file}"
|
|
|
|
image_content = [
|
|
{"type": "text", "text": "What's this file about?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": url},
|
|
},
|
|
]
|
|
image_message = {"role": "user", "content": image_content}
|
|
|
|
response = completion(
|
|
model="vertex_ai_beta/gemini-1.5-flash-preview-0514",
|
|
messages=[image_message],
|
|
stream=False,
|
|
)
|
|
|
|
print(response)
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail("Got={}".format(str(e)))
|
|
|
|
|
|
def encode_image(image_path):
|
|
import base64
|
|
|
|
with open(image_path, "rb") as image_file:
|
|
return base64.b64encode(image_file.read()).decode("utf-8")
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="we already test gemini-pro-vision, this is just another way to pass images"
|
|
)
|
|
def test_gemini_pro_vision_base64():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
image_path = "../proxy/cached_logo.jpg"
|
|
# Getting the base64 string
|
|
base64_image = encode_image(image_path)
|
|
resp = litellm.completion(
|
|
model="vertex_ai/gemini-1.5-pro",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{"type": "text", "text": "Whats in this image?"},
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": "data:image/jpeg;base64," + base64_image
|
|
},
|
|
},
|
|
],
|
|
}
|
|
],
|
|
)
|
|
print(resp)
|
|
|
|
prompt_tokens = resp.usage.prompt_tokens
|
|
except litellm.InternalServerError:
|
|
pass
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "500 Internal error encountered.'" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
def vertex_httpx_grounding_post(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"role": "model",
|
|
"parts": [
|
|
{
|
|
"text": "Argentina won the FIFA World Cup 2022. Argentina defeated France 4-2 on penalties in the FIFA World Cup 2022 final tournament for the first time after 36 years and the third time overall."
|
|
}
|
|
],
|
|
},
|
|
"finishReason": "STOP",
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.14940722,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.07477004,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.15636235,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.015967654,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.1943678,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.1284158,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.09384396,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.0726367,
|
|
},
|
|
],
|
|
"groundingMetadata": {
|
|
"webSearchQueries": ["who won the world cup 2022"],
|
|
"groundingAttributions": [
|
|
{
|
|
"segment": {"endIndex": 38},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://www.careerpower.in/fifa-world-cup-winners-list.html",
|
|
"title": "FIFA World Cup Winners List from 1930 to 2022, Complete List - Career Power",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"endIndex": 38},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://www.careerpower.in/fifa-world-cup-winners-list.html",
|
|
"title": "FIFA World Cup Winners List from 1930 to 2022, Complete List - Career Power",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"endIndex": 38},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://www.britannica.com/sports/2022-FIFA-World-Cup",
|
|
"title": "2022 FIFA World Cup | Qatar, Controversy, Stadiums, Winner, & Final - Britannica",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"endIndex": 38},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://en.wikipedia.org/wiki/2022_FIFA_World_Cup_final",
|
|
"title": "2022 FIFA World Cup final - Wikipedia",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"endIndex": 38},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://www.transfermarkt.com/2022-world-cup/erfolge/pokalwettbewerb/WM22",
|
|
"title": "2022 World Cup - All winners - Transfermarkt",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"startIndex": 39, "endIndex": 187},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://www.careerpower.in/fifa-world-cup-winners-list.html",
|
|
"title": "FIFA World Cup Winners List from 1930 to 2022, Complete List - Career Power",
|
|
},
|
|
},
|
|
{
|
|
"segment": {"startIndex": 39, "endIndex": 187},
|
|
"confidenceScore": 0.9919262,
|
|
"web": {
|
|
"uri": "https://en.wikipedia.org/wiki/2022_FIFA_World_Cup_final",
|
|
"title": "2022 FIFA World Cup final - Wikipedia",
|
|
},
|
|
},
|
|
],
|
|
"searchEntryPoint": {
|
|
"renderedContent": '\u003cstyle\u003e\n.container {\n align-items: center;\n border-radius: 8px;\n display: flex;\n font-family: Google Sans, Roboto, sans-serif;\n font-size: 14px;\n line-height: 20px;\n padding: 8px 12px;\n}\n.chip {\n display: inline-block;\n border: solid 1px;\n border-radius: 16px;\n min-width: 14px;\n padding: 5px 16px;\n text-align: center;\n user-select: none;\n margin: 0 8px;\n -webkit-tap-highlight-color: transparent;\n}\n.carousel {\n overflow: auto;\n scrollbar-width: none;\n white-space: nowrap;\n margin-right: -12px;\n}\n.headline {\n display: flex;\n margin-right: 4px;\n}\n.gradient-container {\n position: relative;\n}\n.gradient {\n position: absolute;\n transform: translate(3px, -9px);\n height: 36px;\n width: 9px;\n}\n@media (prefers-color-scheme: light) {\n .container {\n background-color: #fafafa;\n box-shadow: 0 0 0 1px #0000000f;\n }\n .headline-label {\n color: #1f1f1f;\n }\n .chip {\n background-color: #ffffff;\n border-color: #d2d2d2;\n color: #5e5e5e;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #f2f2f2;\n }\n .chip:focus {\n background-color: #f2f2f2;\n }\n .chip:active {\n background-color: #d8d8d8;\n border-color: #b6b6b6;\n }\n .logo-dark {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #fafafa 15%, #fafafa00 100%);\n }\n}\n@media (prefers-color-scheme: dark) {\n .container {\n background-color: #1f1f1f;\n box-shadow: 0 0 0 1px #ffffff26;\n }\n .headline-label {\n color: #fff;\n }\n .chip {\n background-color: #2c2c2c;\n border-color: #3c4043;\n color: #fff;\n text-decoration: none;\n }\n .chip:hover {\n background-color: #353536;\n }\n .chip:focus {\n background-color: #353536;\n }\n .chip:active {\n background-color: #464849;\n border-color: #53575b;\n }\n .logo-light {\n display: none;\n }\n .gradient {\n background: linear-gradient(90deg, #1f1f1f 15%, #1f1f1f00 100%);\n }\n}\n\u003c/style\u003e\n\u003cdiv class="container"\u003e\n \u003cdiv class="headline"\u003e\n \u003csvg class="logo-light" width="18" height="18" viewBox="9 9 35 35" fill="none" xmlns="http://www.w3.org/2000/svg"\u003e\n \u003cpath fill-rule="evenodd" clip-rule="evenodd" d="M42.8622 27.0064C42.8622 25.7839 42.7525 24.6084 42.5487 23.4799H26.3109V30.1568H35.5897C35.1821 32.3041 33.9596 34.1222 32.1258 35.3448V39.6864H37.7213C40.9814 36.677 42.8622 32.2571 42.8622 27.0064V27.0064Z" fill="#4285F4"/\u003e\n \u003cpath fill-rule="evenodd" clip-rule="evenodd" d="M26.3109 43.8555C30.9659 43.8555 34.8687 42.3195 37.7213 39.6863L32.1258 35.3447C30.5898 36.3792 28.6306 37.0061 26.3109 37.0061C21.8282 37.0061 18.0195 33.9811 16.6559 29.906H10.9194V34.3573C13.7563 39.9841 19.5712 43.8555 26.3109 43.8555V43.8555Z" fill="#34A853"/\u003e\n \u003cpath fill-rule="evenodd" clip-rule="evenodd" d="M16.6559 29.8904C16.3111 28.8559 16.1074 27.7588 16.1074 26.6146C16.1074 25.4704 16.3111 24.3733 16.6559 23.3388V18.8875H10.9194C9.74388 21.2072 9.06992 23.8247 9.06992 26.6146C9.06992 29.4045 9.74388 32.022 10.9194 34.3417L15.3864 30.8621L16.6559 29.8904V29.8904Z" fill="#FBBC05"/\u003e\n \u003cpath fill-rule="evenodd" clip-rule="evenodd" d="M26.3109 16.2386C28.85 16.2386 31.107 17.1164 32.9095 18.8091L37.8466 13.8719C34.853 11.082 30.9659 9.3736 26.3109 9.3736C19.5712 9.3736 13.7563 13.245 10.9194 18.8875L16.6559 23.3388C18.0195 19.2636 21.8282 16.2386 26.3109 16.2386V16.2386Z" fill="#EA4335"/\u003e\n \u003c/svg\u003e\n \u003csvg class="logo-dark" width="18" height="18" viewBox="0 0 48 48" xmlns="http://www.w3.org/2000/svg"\u003e\n \u003ccircle cx="24" cy="23" fill="#FFF" r="22"/\u003e\n \u003cpath d="M33.76 34.26c2.75-2.56 4.49-6.37 4.49-11.26 0-.89-.08-1.84-.29-3H24.01v5.99h8.03c-.4 2.02-1.5 3.56-3.07 4.56v.75l3.91 2.97h.88z" fill="#4285F4"/\u003e\n \u003cpath d="M15.58 25.77A8.845 8.845 0 0 0 24 31.86c1.92 0 3.62-.46 4.97-1.31l4.79 3.71C31.14 36.7 27.65 38 24 38c-5.93 0-11.01-3.4-13.45-8.36l.17-1.01 4.06-2.85h.8z" fill="#34A853"/\u003e\n \u003cpath d="M15.59 20.21a8.864 8.864 0 0 0 0 5.58l-5.03 3.86c-.98-2-1.53-4.25-1.53-6.64 0-2.39.55-4.64 1.53-6.64l1-.22 3.81 2.98.22 1.08z" fill="#FBBC05"/\u003e\n \u003cpath d="M24 14.14c2.11 0 4.02.75 5.52 1.98l4.36-4.36C31.22 9.43 27.81 8 24 8c-5.93 0-11.01 3.4-13.45 8.36l5.03 3.85A8.86 8.86 0 0 1 24 14.14z" fill="#EA4335"/\u003e\n \u003c/svg\u003e\n \u003cdiv class="gradient-container"\u003e\u003cdiv class="gradient"\u003e\u003c/div\u003e\u003c/div\u003e\n \u003c/div\u003e\n \u003cdiv class="carousel"\u003e\n \u003ca class="chip" href="https://www.google.com/search?q=who+won+the+world+cup+2022&client=app-vertex-grounding&safesearch=active"\u003ewho won the world cup 2022\u003c/a\u003e\n \u003c/div\u003e\n\u003c/div\u003e\n'
|
|
},
|
|
},
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 6,
|
|
"candidatesTokenCount": 48,
|
|
"totalTokenCount": 54,
|
|
},
|
|
}
|
|
|
|
return mock_response
|
|
|
|
|
|
@pytest.mark.parametrize("value_in_dict", [{}, {"disable_attribution": False}]) #
|
|
def test_gemini_pro_grounding(value_in_dict):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
tools = [{"googleSearchRetrieval": value_in_dict}]
|
|
|
|
litellm.set_verbose = True
|
|
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
|
|
with patch.object(
|
|
client, "post", side_effect=vertex_httpx_grounding_post
|
|
) as mock_call:
|
|
resp = litellm.completion(
|
|
model="vertex_ai_beta/gemini-1.0-pro-001",
|
|
messages=[{"role": "user", "content": "Who won the world cup?"}],
|
|
tools=tools,
|
|
client=client,
|
|
)
|
|
|
|
mock_call.assert_called_once()
|
|
|
|
print(mock_call.call_args.kwargs["json"]["tools"][0])
|
|
|
|
assert (
|
|
"googleSearchRetrieval"
|
|
in mock_call.call_args.kwargs["json"]["tools"][0]
|
|
)
|
|
assert (
|
|
mock_call.call_args.kwargs["json"]["tools"][0]["googleSearchRetrieval"]
|
|
== value_in_dict
|
|
)
|
|
|
|
assert "vertex_ai_grounding_metadata" in resp._hidden_params
|
|
assert isinstance(resp._hidden_params["vertex_ai_grounding_metadata"], list)
|
|
|
|
except litellm.InternalServerError:
|
|
pass
|
|
except litellm.RateLimitError:
|
|
pass
|
|
|
|
|
|
# @pytest.mark.skip(reason="exhausted vertex quota. need to refactor to mock the call")
|
|
@pytest.mark.parametrize(
|
|
"model", ["vertex_ai_beta/gemini-1.5-pro", "vertex_ai/claude-3-sonnet@20240229"]
|
|
) # "vertex_ai",
|
|
@pytest.mark.parametrize("sync_mode", [True]) # "vertex_ai",
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_gemini_pro_function_calling_httpx(model, sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
]
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
}
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
"tools": tools,
|
|
"tool_choice": "required",
|
|
}
|
|
print(f"Model for call - {model}")
|
|
if sync_mode:
|
|
response = litellm.completion(**data)
|
|
else:
|
|
response = await litellm.acompletion(**data)
|
|
|
|
print(f"response: {response}")
|
|
|
|
assert response.choices[0].message.tool_calls[0].function.arguments is not None
|
|
assert isinstance(
|
|
response.choices[0].message.tool_calls[0].function.arguments, str
|
|
)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "429 Quota exceeded" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
|
|
|
|
|
from test_completion import response_format_tests
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"vertex_ai/mistral-large@2407",
|
|
"vertex_ai/mistral-nemo@2407",
|
|
"vertex_ai/codestral@2405",
|
|
"vertex_ai/meta/llama3-405b-instruct-maas",
|
|
], #
|
|
) # "vertex_ai",
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True, False],
|
|
) #
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
@pytest.mark.asyncio
|
|
async def test_partner_models_httpx(model, sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
]
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
}
|
|
if sync_mode:
|
|
response = litellm.completion(**data)
|
|
else:
|
|
response = await litellm.acompletion(**data)
|
|
|
|
response_format_tests(response=response)
|
|
|
|
print(f"response: {response}")
|
|
|
|
assert isinstance(response._hidden_params["response_cost"], float)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "429 Quota exceeded" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"vertex_ai/mistral-large@2407",
|
|
"vertex_ai/meta/llama3-405b-instruct-maas",
|
|
], #
|
|
) # "vertex_ai",
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True, False], #
|
|
) #
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_partner_models_httpx_streaming(model, sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
]
|
|
|
|
data = {"model": model, "messages": messages, "stream": True}
|
|
if sync_mode:
|
|
response = litellm.completion(**data)
|
|
for idx, chunk in enumerate(response):
|
|
streaming_format_tests(idx=idx, chunk=chunk)
|
|
else:
|
|
response = await litellm.acompletion(**data)
|
|
idx = 0
|
|
async for chunk in response:
|
|
streaming_format_tests(idx=idx, chunk=chunk)
|
|
idx += 1
|
|
|
|
print(f"response: {response}")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "429 Quota exceeded" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
|
|
|
|
|
def vertex_httpx_mock_reject_prompt_post(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"promptFeedback": {"blockReason": "OTHER"},
|
|
"usageMetadata": {"promptTokenCount": 6285, "totalTokenCount": 6285},
|
|
}
|
|
|
|
return mock_response
|
|
|
|
|
|
# @pytest.mark.skip(reason="exhausted vertex quota. need to refactor to mock the call")
|
|
def vertex_httpx_mock_post(url, data=None, json=None, headers=None):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"candidates": [
|
|
{
|
|
"finishReason": "RECITATION",
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.14965563,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.13660839,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.16344544,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.10230471,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.1979091,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.06052939,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.1765296,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.18417984,
|
|
},
|
|
],
|
|
"citationMetadata": {
|
|
"citations": [
|
|
{
|
|
"startIndex": 251,
|
|
"endIndex": 380,
|
|
"uri": "https://chocolatecake2023.blogspot.com/2023/02/taste-deliciousness-of-perfectly-baked.html?m=1",
|
|
},
|
|
{
|
|
"startIndex": 393,
|
|
"endIndex": 535,
|
|
"uri": "https://skinnymixes.co.uk/blogs/food-recipes/peanut-butter-cup-cookies",
|
|
},
|
|
{
|
|
"startIndex": 439,
|
|
"endIndex": 581,
|
|
"uri": "https://mast-producing-trees.org/aldis-chocolate-chips-are-peanut-and-tree-nut-free/",
|
|
},
|
|
{
|
|
"startIndex": 1117,
|
|
"endIndex": 1265,
|
|
"uri": "https://github.com/frdrck100/To_Do_Assignments",
|
|
},
|
|
{
|
|
"startIndex": 1146,
|
|
"endIndex": 1288,
|
|
"uri": "https://skinnymixes.co.uk/blogs/food-recipes/peanut-butter-cup-cookies",
|
|
},
|
|
{
|
|
"startIndex": 1166,
|
|
"endIndex": 1299,
|
|
"uri": "https://www.girlversusdough.com/brookies/",
|
|
},
|
|
{
|
|
"startIndex": 1780,
|
|
"endIndex": 1909,
|
|
"uri": "https://chocolatecake2023.blogspot.com/2023/02/taste-deliciousness-of-perfectly-baked.html?m=1",
|
|
},
|
|
{
|
|
"startIndex": 1834,
|
|
"endIndex": 1964,
|
|
"uri": "https://newsd.in/national-cream-cheese-brownie-day-2023-date-history-how-to-make-a-cream-cheese-brownie/",
|
|
},
|
|
{
|
|
"startIndex": 1846,
|
|
"endIndex": 1989,
|
|
"uri": "https://github.com/frdrck100/To_Do_Assignments",
|
|
},
|
|
{
|
|
"startIndex": 2121,
|
|
"endIndex": 2261,
|
|
"uri": "https://recipes.net/copycat/hardee/hardees-chocolate-chip-cookie-recipe/",
|
|
},
|
|
{
|
|
"startIndex": 2505,
|
|
"endIndex": 2671,
|
|
"uri": "https://www.tfrecipes.com/Oranges%20with%20dried%20cherries/",
|
|
},
|
|
{
|
|
"startIndex": 3390,
|
|
"endIndex": 3529,
|
|
"uri": "https://github.com/quantumcognition/Crud-palm",
|
|
},
|
|
{
|
|
"startIndex": 3568,
|
|
"endIndex": 3724,
|
|
"uri": "https://recipes.net/dessert/cakes/ultimate-easy-gingerbread/",
|
|
},
|
|
{
|
|
"startIndex": 3640,
|
|
"endIndex": 3770,
|
|
"uri": "https://recipes.net/dessert/cookies/soft-and-chewy-peanut-butter-cookies/",
|
|
},
|
|
]
|
|
},
|
|
}
|
|
],
|
|
"usageMetadata": {"promptTokenCount": 336, "totalTokenCount": 336},
|
|
}
|
|
return mock_response
|
|
|
|
|
|
@pytest.mark.parametrize("provider", ["vertex_ai_beta"]) # "vertex_ai",
|
|
@pytest.mark.parametrize("content_filter_type", ["prompt", "response"]) # "vertex_ai",
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_gemini_pro_json_schema_httpx_content_policy_error(
|
|
provider, content_filter_type
|
|
):
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": """
|
|
|
|
List 5 popular cookie recipes.
|
|
|
|
Using this JSON schema:
|
|
```json
|
|
{'$defs': {'Recipe': {'properties': {'recipe_name': {'examples': ['Chocolate Chip Cookies', 'Peanut Butter Cookies'], 'maxLength': 100, 'title': 'The recipe name', 'type': 'string'}, 'estimated_time': {'anyOf': [{'minimum': 0, 'type': 'integer'}, {'type': 'null'}], 'default': None, 'description': 'The estimated time to make the recipe in minutes', 'examples': [30, 45], 'title': 'The estimated time'}, 'ingredients': {'examples': [['flour', 'sugar', 'chocolate chips'], ['peanut butter', 'sugar', 'eggs']], 'items': {'type': 'string'}, 'maxItems': 10, 'title': 'The ingredients', 'type': 'array'}, 'instructions': {'examples': [['mix', 'bake'], ['mix', 'chill', 'bake']], 'items': {'type': 'string'}, 'maxItems': 10, 'title': 'The instructions', 'type': 'array'}}, 'required': ['recipe_name', 'ingredients', 'instructions'], 'title': 'Recipe', 'type': 'object'}}, 'properties': {'recipes': {'items': {'$ref': '#/$defs/Recipe'}, 'maxItems': 11, 'title': 'The recipes', 'type': 'array'}}, 'required': ['recipes'], 'title': 'MyRecipes', 'type': 'object'}
|
|
```
|
|
""",
|
|
}
|
|
]
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
|
|
if content_filter_type == "prompt":
|
|
_side_effect = vertex_httpx_mock_reject_prompt_post
|
|
else:
|
|
_side_effect = vertex_httpx_mock_post
|
|
|
|
with patch.object(client, "post", side_effect=_side_effect) as mock_call:
|
|
response = completion(
|
|
model="vertex_ai_beta/gemini-1.5-flash",
|
|
messages=messages,
|
|
response_format={"type": "json_object"},
|
|
client=client,
|
|
)
|
|
|
|
assert response.choices[0].finish_reason == "content_filter"
|
|
|
|
mock_call.assert_called_once()
|
|
|
|
|
|
def vertex_httpx_mock_post_valid_response(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"role": "model",
|
|
"parts": [
|
|
{
|
|
"text": """{
|
|
"recipes": [
|
|
{"recipe_name": "Chocolate Chip Cookies"},
|
|
{"recipe_name": "Oatmeal Raisin Cookies"},
|
|
{"recipe_name": "Peanut Butter Cookies"},
|
|
{"recipe_name": "Sugar Cookies"},
|
|
{"recipe_name": "Snickerdoodles"}
|
|
]
|
|
}"""
|
|
}
|
|
],
|
|
},
|
|
"finishReason": "STOP",
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.09790669,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.11736965,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.1261379,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.08601588,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.083441176,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.0355444,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.071981624,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.08108212,
|
|
},
|
|
],
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 60,
|
|
"candidatesTokenCount": 55,
|
|
"totalTokenCount": 115,
|
|
},
|
|
}
|
|
return mock_response
|
|
|
|
|
|
def vertex_httpx_mock_post_valid_response_anthropic(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"id": "msg_vrtx_013Wki5RFQXAspL7rmxRFjZg",
|
|
"type": "message",
|
|
"role": "assistant",
|
|
"model": "claude-3-5-sonnet-20240620",
|
|
"content": [
|
|
{
|
|
"type": "tool_use",
|
|
"id": "toolu_vrtx_01YMnYZrToPPfcmY2myP2gEB",
|
|
"name": "json_tool_call",
|
|
"input": {
|
|
"values": {
|
|
"recipes": [
|
|
{"recipe_name": "Chocolate Chip Cookies"},
|
|
{"recipe_name": "Oatmeal Raisin Cookies"},
|
|
{"recipe_name": "Peanut Butter Cookies"},
|
|
{"recipe_name": "Snickerdoodle Cookies"},
|
|
{"recipe_name": "Sugar Cookies"},
|
|
]
|
|
}
|
|
},
|
|
}
|
|
],
|
|
"stop_reason": "tool_use",
|
|
"stop_sequence": None,
|
|
"usage": {"input_tokens": 368, "output_tokens": 118},
|
|
}
|
|
|
|
return mock_response
|
|
|
|
|
|
def vertex_httpx_mock_post_invalid_schema_response(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"role": "model",
|
|
"parts": [
|
|
{"text": '[{"recipe_world": "Chocolate Chip Cookies"}]\n'}
|
|
],
|
|
},
|
|
"finishReason": "STOP",
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.09790669,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.11736965,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.1261379,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.08601588,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.083441176,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.0355444,
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.071981624,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.08108212,
|
|
},
|
|
],
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 60,
|
|
"candidatesTokenCount": 55,
|
|
"totalTokenCount": 115,
|
|
},
|
|
}
|
|
return mock_response
|
|
|
|
|
|
def vertex_httpx_mock_post_invalid_schema_response_anthropic(*args, **kwargs):
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = {
|
|
"id": "msg_vrtx_013Wki5RFQXAspL7rmxRFjZg",
|
|
"type": "message",
|
|
"role": "assistant",
|
|
"model": "claude-3-5-sonnet-20240620",
|
|
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
|
|
"stop_reason": "end_turn",
|
|
"stop_sequence": None,
|
|
"usage": {"input_tokens": 368, "output_tokens": 118},
|
|
}
|
|
return mock_response
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, vertex_location, supports_response_schema",
|
|
[
|
|
("vertex_ai_beta/gemini-1.5-pro-001", "us-central1", True),
|
|
("gemini/gemini-1.5-pro", None, True),
|
|
("vertex_ai_beta/gemini-1.5-flash", "us-central1", True),
|
|
("vertex_ai/claude-3-5-sonnet@20240620", "us-east5", False),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"invalid_response",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"enforce_validation",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_gemini_pro_json_schema_args_sent_httpx(
|
|
model,
|
|
supports_response_schema,
|
|
vertex_location,
|
|
invalid_response,
|
|
enforce_validation,
|
|
):
|
|
load_vertex_ai_credentials()
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
litellm.set_verbose = True
|
|
messages = [{"role": "user", "content": "List 5 cookie recipes"}]
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
response_schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"recipes": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "object",
|
|
"properties": {"recipe_name": {"type": "string"}},
|
|
"required": ["recipe_name"],
|
|
},
|
|
}
|
|
},
|
|
"required": ["recipes"],
|
|
"additionalProperties": False,
|
|
}
|
|
|
|
client = HTTPHandler()
|
|
|
|
httpx_response = MagicMock()
|
|
if invalid_response is True:
|
|
if "claude" in model:
|
|
httpx_response.side_effect = (
|
|
vertex_httpx_mock_post_invalid_schema_response_anthropic
|
|
)
|
|
else:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_invalid_schema_response
|
|
else:
|
|
if "claude" in model:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_valid_response_anthropic
|
|
else:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_valid_response
|
|
with patch.object(client, "post", new=httpx_response) as mock_call:
|
|
print("SENDING CLIENT POST={}".format(client.post))
|
|
try:
|
|
resp = completion(
|
|
model=model,
|
|
messages=messages,
|
|
response_format={
|
|
"type": "json_object",
|
|
"response_schema": response_schema,
|
|
"enforce_validation": enforce_validation,
|
|
},
|
|
vertex_location=vertex_location,
|
|
client=client,
|
|
)
|
|
print("Received={}".format(resp))
|
|
if invalid_response is True and enforce_validation is True:
|
|
pytest.fail("Expected this to fail")
|
|
except litellm.JSONSchemaValidationError as e:
|
|
if invalid_response is False:
|
|
pytest.fail("Expected this to pass. Got={}".format(e))
|
|
|
|
mock_call.assert_called_once()
|
|
if "claude" not in model:
|
|
print(mock_call.call_args.kwargs)
|
|
print(mock_call.call_args.kwargs["json"]["generationConfig"])
|
|
|
|
if supports_response_schema:
|
|
assert (
|
|
"response_schema"
|
|
in mock_call.call_args.kwargs["json"]["generationConfig"]
|
|
)
|
|
else:
|
|
assert (
|
|
"response_schema"
|
|
not in mock_call.call_args.kwargs["json"]["generationConfig"]
|
|
)
|
|
assert (
|
|
"Use this JSON schema:"
|
|
in mock_call.call_args.kwargs["json"]["contents"][0]["parts"][1][
|
|
"text"
|
|
]
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, vertex_location, supports_response_schema",
|
|
[
|
|
("vertex_ai_beta/gemini-1.5-pro-001", "us-central1", True),
|
|
("gemini/gemini-1.5-pro", None, True),
|
|
("vertex_ai_beta/gemini-1.5-flash", "us-central1", True),
|
|
("vertex_ai/claude-3-5-sonnet@20240620", "us-east5", False),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"invalid_response",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"enforce_validation",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_gemini_pro_json_schema_args_sent_httpx_openai_schema(
|
|
model,
|
|
supports_response_schema,
|
|
vertex_location,
|
|
invalid_response,
|
|
enforce_validation,
|
|
):
|
|
from typing import List
|
|
|
|
if enforce_validation:
|
|
litellm.enable_json_schema_validation = True
|
|
|
|
from pydantic import BaseModel
|
|
|
|
load_vertex_ai_credentials()
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
litellm.set_verbose = True
|
|
|
|
messages = [{"role": "user", "content": "List 5 cookie recipes"}]
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
class Recipe(BaseModel):
|
|
recipe_name: str
|
|
|
|
class ResponseSchema(BaseModel):
|
|
recipes: List[Recipe]
|
|
|
|
client = HTTPHandler()
|
|
|
|
httpx_response = MagicMock()
|
|
if invalid_response is True:
|
|
if "claude" in model:
|
|
httpx_response.side_effect = (
|
|
vertex_httpx_mock_post_invalid_schema_response_anthropic
|
|
)
|
|
else:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_invalid_schema_response
|
|
else:
|
|
if "claude" in model:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_valid_response_anthropic
|
|
else:
|
|
httpx_response.side_effect = vertex_httpx_mock_post_valid_response
|
|
with patch.object(client, "post", new=httpx_response) as mock_call:
|
|
print("SENDING CLIENT POST={}".format(client.post))
|
|
try:
|
|
resp = completion(
|
|
model=model,
|
|
messages=messages,
|
|
response_format=ResponseSchema,
|
|
vertex_location=vertex_location,
|
|
client=client,
|
|
)
|
|
print("Received={}".format(resp))
|
|
if invalid_response is True and enforce_validation is True:
|
|
pytest.fail("Expected this to fail")
|
|
except litellm.JSONSchemaValidationError as e:
|
|
if invalid_response is False:
|
|
pytest.fail("Expected this to pass. Got={}".format(e))
|
|
|
|
mock_call.assert_called_once()
|
|
if "claude" not in model:
|
|
print(mock_call.call_args.kwargs)
|
|
print(mock_call.call_args.kwargs["json"]["generationConfig"])
|
|
|
|
if supports_response_schema:
|
|
assert (
|
|
"response_schema"
|
|
in mock_call.call_args.kwargs["json"]["generationConfig"]
|
|
)
|
|
assert (
|
|
"response_mime_type"
|
|
in mock_call.call_args.kwargs["json"]["generationConfig"]
|
|
)
|
|
assert (
|
|
mock_call.call_args.kwargs["json"]["generationConfig"][
|
|
"response_mime_type"
|
|
]
|
|
== "application/json"
|
|
)
|
|
else:
|
|
assert (
|
|
"response_schema"
|
|
not in mock_call.call_args.kwargs["json"]["generationConfig"]
|
|
)
|
|
assert (
|
|
"Use this JSON schema:"
|
|
in mock_call.call_args.kwargs["json"]["contents"][0]["parts"][1][
|
|
"text"
|
|
]
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model", ["gemini-1.5-flash", "claude-3-sonnet@20240229"]
|
|
) # "vertex_ai",
|
|
@pytest.mark.asyncio
|
|
async def test_gemini_pro_httpx_custom_api_base(model):
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "Hello world",
|
|
}
|
|
]
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
|
|
with patch.object(client, "post", new=MagicMock()) as mock_call:
|
|
try:
|
|
response = completion(
|
|
model="vertex_ai/{}".format(model),
|
|
messages=messages,
|
|
response_format={"type": "json_object"},
|
|
client=client,
|
|
api_base="my-custom-api-base",
|
|
extra_headers={"hello": "world"},
|
|
)
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
print("Receives error - {}".format(str(e)))
|
|
|
|
mock_call.assert_called_once()
|
|
|
|
print(f"mock_call.call_args: {mock_call.call_args}")
|
|
print(f"mock_call.call_args.kwargs: {mock_call.call_args.kwargs}")
|
|
if "url" in mock_call.call_args.kwargs:
|
|
assert (
|
|
"my-custom-api-base:generateContent"
|
|
== mock_call.call_args.kwargs["url"]
|
|
)
|
|
else:
|
|
assert "my-custom-api-base:rawPredict" == mock_call.call_args[0][0]
|
|
if "headers" in mock_call.call_args.kwargs:
|
|
assert "hello" in mock_call.call_args.kwargs["headers"]
|
|
|
|
|
|
# @pytest.mark.skip(reason="exhausted vertex quota. need to refactor to mock the call")
|
|
@pytest.mark.parametrize("sync_mode", [True])
|
|
@pytest.mark.parametrize("provider", ["vertex_ai"])
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_gemini_pro_function_calling(provider, sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
# Assistant replies with a tool call
|
|
{
|
|
"role": "assistant",
|
|
"content": "",
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_123",
|
|
"type": "function",
|
|
"index": 0,
|
|
"function": {
|
|
"name": "get_weather",
|
|
"arguments": '{"location":"San Francisco, CA"}',
|
|
},
|
|
}
|
|
],
|
|
},
|
|
# The result of the tool call is added to the history
|
|
{
|
|
"role": "tool",
|
|
"tool_call_id": "call_123",
|
|
"content": "27 degrees celsius and clear in San Francisco, CA",
|
|
},
|
|
# Now the assistant can reply with the result of the tool call.
|
|
]
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
}
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
data = {
|
|
"model": "{}/gemini-1.5-pro-preview-0514".format(provider),
|
|
"messages": messages,
|
|
"tools": tools,
|
|
}
|
|
if sync_mode:
|
|
response = litellm.completion(**data)
|
|
else:
|
|
response = await litellm.acompletion(**data)
|
|
|
|
print(f"response: {response}")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
if "429 Quota exceeded" in str(e):
|
|
pass
|
|
else:
|
|
pytest.fail("An unexpected exception occurred - {}".format(str(e)))
|
|
|
|
|
|
# gemini_pro_function_calling()
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True])
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_gemini_pro_function_calling_streaming(sync_mode):
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
data = {
|
|
"model": "vertex_ai/gemini-pro",
|
|
"messages": [
|
|
{
|
|
"role": "user",
|
|
"content": "Call the submit_cities function with San Francisco and New York",
|
|
}
|
|
],
|
|
"tools": [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "submit_cities",
|
|
"description": "Submits a list of cities",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"cities": {"type": "array", "items": {"type": "string"}}
|
|
},
|
|
"required": ["cities"],
|
|
},
|
|
},
|
|
}
|
|
],
|
|
"tool_choice": "auto",
|
|
"n": 1,
|
|
"stream": True,
|
|
"temperature": 0.1,
|
|
}
|
|
chunks = []
|
|
try:
|
|
if sync_mode == True:
|
|
response = litellm.completion(**data)
|
|
print(f"completion: {response}")
|
|
|
|
for chunk in response:
|
|
chunks.append(chunk)
|
|
assert isinstance(chunk, litellm.ModelResponse)
|
|
else:
|
|
response = await litellm.acompletion(**data)
|
|
print(f"completion: {response}")
|
|
|
|
assert isinstance(response, litellm.CustomStreamWrapper)
|
|
|
|
async for chunk in response:
|
|
print(f"chunk: {chunk}")
|
|
chunks.append(chunk)
|
|
assert isinstance(chunk, litellm.ModelResponse)
|
|
|
|
complete_response = litellm.stream_chunk_builder(chunks=chunks)
|
|
assert (
|
|
complete_response.choices[0].message.content is not None
|
|
or len(complete_response.choices[0].message.tool_calls) > 0
|
|
)
|
|
print(f"complete_response: {complete_response}")
|
|
except litellm.APIError as e:
|
|
pass
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_gemini_pro_async_function_calling():
|
|
load_vertex_ai_credentials()
|
|
try:
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in Boston today in fahrenheit?",
|
|
}
|
|
]
|
|
completion = await litellm.acompletion(
|
|
model="gemini-pro", messages=messages, tools=tools, tool_choice="auto"
|
|
)
|
|
print(f"completion: {completion}")
|
|
print(f"message content: {completion.choices[0].message.content}")
|
|
assert completion.choices[0].message.content is None
|
|
assert len(completion.choices[0].message.tool_calls) == 1
|
|
|
|
# except litellm.APIError as e:
|
|
# pass
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
# raise Exception("it worked!")
|
|
|
|
|
|
# asyncio.run(gemini_pro_async_function_calling())
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_vertexai_embedding(sync_mode):
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
input_text = ["good morning from litellm", "this is another item"]
|
|
|
|
if sync_mode:
|
|
response = litellm.embedding(
|
|
model="textembedding-gecko@001", input=input_text
|
|
)
|
|
else:
|
|
response = await litellm.aembedding(
|
|
model="textembedding-gecko@001", input=input_text
|
|
)
|
|
|
|
print(f"response: {response}")
|
|
|
|
# Assert that the response is not None
|
|
assert response is not None
|
|
|
|
# Assert that the response contains embeddings
|
|
assert hasattr(response, "data")
|
|
assert len(response.data) == len(input_text)
|
|
|
|
# Assert that each embedding is a non-empty list of floats
|
|
for embedding in response.data:
|
|
assert "embedding" in embedding
|
|
assert isinstance(embedding["embedding"], list)
|
|
assert len(embedding["embedding"]) > 0
|
|
assert all(isinstance(x, float) for x in embedding["embedding"])
|
|
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vertexai_multimodal_embedding():
|
|
load_vertex_ai_credentials()
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"predictions": [
|
|
{
|
|
"imageEmbedding": [0.1, 0.2, 0.3], # Simplified example
|
|
"textEmbedding": [0.4, 0.5, 0.6], # Simplified example
|
|
}
|
|
]
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"instances": [
|
|
{
|
|
"image": {
|
|
"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
|
|
},
|
|
"text": "this is a unicorn",
|
|
}
|
|
]
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
# Act: Call the litellm.aembedding function
|
|
response = await litellm.aembedding(
|
|
model="vertex_ai/multimodalembedding@001",
|
|
input=[
|
|
{
|
|
"image": {
|
|
"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
|
|
},
|
|
"text": "this is a unicorn",
|
|
},
|
|
],
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_vertexai = kwargs["json"]
|
|
|
|
print("args to vertex ai call:", args_to_vertexai)
|
|
|
|
assert args_to_vertexai == expected_payload
|
|
assert response.model == "multimodalembedding@001"
|
|
assert len(response.data) == 1
|
|
response_data = response.data[0]
|
|
|
|
# Optional: Print for debugging
|
|
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
|
print("Response:", response)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vertexai_multimodal_embedding_text_input():
|
|
load_vertex_ai_credentials()
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"predictions": [
|
|
{
|
|
"textEmbedding": [0.4, 0.5, 0.6], # Simplified example
|
|
}
|
|
]
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"instances": [
|
|
{
|
|
"text": "this is a unicorn",
|
|
}
|
|
]
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
# Act: Call the litellm.aembedding function
|
|
response = await litellm.aembedding(
|
|
model="vertex_ai/multimodalembedding@001",
|
|
input=[
|
|
"this is a unicorn",
|
|
],
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_vertexai = kwargs["json"]
|
|
|
|
print("args to vertex ai call:", args_to_vertexai)
|
|
|
|
assert args_to_vertexai == expected_payload
|
|
assert response.model == "multimodalembedding@001"
|
|
assert len(response.data) == 1
|
|
response_data = response.data[0]
|
|
assert response_data["embedding"] == [0.4, 0.5, 0.6]
|
|
|
|
# Optional: Print for debugging
|
|
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
|
print("Response:", response)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vertexai_multimodal_embedding_image_in_input():
|
|
load_vertex_ai_credentials()
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"predictions": [
|
|
{
|
|
"imageEmbedding": [0.1, 0.2, 0.3], # Simplified example
|
|
}
|
|
]
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"instances": [
|
|
{
|
|
"image": {
|
|
"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
|
|
},
|
|
}
|
|
]
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
# Act: Call the litellm.aembedding function
|
|
response = await litellm.aembedding(
|
|
model="vertex_ai/multimodalembedding@001",
|
|
input=["gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"],
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_vertexai = kwargs["json"]
|
|
|
|
print("args to vertex ai call:", args_to_vertexai)
|
|
|
|
assert args_to_vertexai == expected_payload
|
|
assert response.model == "multimodalembedding@001"
|
|
assert len(response.data) == 1
|
|
response_data = response.data[0]
|
|
|
|
assert response_data["embedding"] == [0.1, 0.2, 0.3]
|
|
|
|
# Optional: Print for debugging
|
|
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
|
print("Response:", response)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_vertexai_multimodal_embedding_base64image_in_input():
|
|
import base64
|
|
|
|
import requests
|
|
|
|
load_vertex_ai_credentials()
|
|
mock_response = AsyncMock()
|
|
|
|
url = "https://dummyimage.com/100/100/fff&text=Test+image"
|
|
response = requests.get(url)
|
|
file_data = response.content
|
|
|
|
encoded_file = base64.b64encode(file_data).decode("utf-8")
|
|
base64_image = f"data:image/png;base64,{encoded_file}"
|
|
|
|
def return_val():
|
|
return {
|
|
"predictions": [
|
|
{
|
|
"imageEmbedding": [0.1, 0.2, 0.3], # Simplified example
|
|
}
|
|
]
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"instances": [
|
|
{
|
|
"image": {"bytesBase64Encoded": base64_image},
|
|
}
|
|
]
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
# Act: Call the litellm.aembedding function
|
|
response = await litellm.aembedding(
|
|
model="vertex_ai/multimodalembedding@001",
|
|
input=[base64_image],
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_vertexai = kwargs["json"]
|
|
|
|
print("args to vertex ai call:", args_to_vertexai)
|
|
|
|
assert args_to_vertexai == expected_payload
|
|
assert response.model == "multimodalembedding@001"
|
|
assert len(response.data) == 1
|
|
response_data = response.data[0]
|
|
|
|
assert response_data["embedding"] == [0.1, 0.2, 0.3]
|
|
|
|
# Optional: Print for debugging
|
|
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
|
print("Response:", response)
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="new test - works locally running into vertex version issues on ci/cd"
|
|
)
|
|
def test_vertexai_embedding_embedding_latest():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
response = embedding(
|
|
model="vertex_ai/text-embedding-004",
|
|
input=["hi"],
|
|
dimensions=1,
|
|
auto_truncate=True,
|
|
task_type="RETRIEVAL_QUERY",
|
|
)
|
|
|
|
assert len(response.data[0]["embedding"]) == 1
|
|
assert response.usage.prompt_tokens > 0
|
|
print(f"response:", response)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_vertexai_embedding_embedding_latest_input_type():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
|
|
response = embedding(
|
|
model="vertex_ai/text-embedding-004",
|
|
input=["hi"],
|
|
input_type="RETRIEVAL_QUERY",
|
|
)
|
|
assert response.usage.prompt_tokens > 0
|
|
print(f"response:", response)
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_vertexai_aembedding():
|
|
try:
|
|
load_vertex_ai_credentials()
|
|
# litellm.set_verbose=True
|
|
response = await litellm.aembedding(
|
|
model="textembedding-gecko@001",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response: {response}")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
def test_tool_name_conversion():
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
# Assistant replies with a tool call
|
|
{
|
|
"role": "assistant",
|
|
"content": "",
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_123",
|
|
"type": "function",
|
|
"index": 0,
|
|
"function": {
|
|
"name": "get_weather",
|
|
"arguments": '{"location":"San Francisco, CA"}',
|
|
},
|
|
}
|
|
],
|
|
},
|
|
# The result of the tool call is added to the history
|
|
{
|
|
"role": "tool",
|
|
"tool_call_id": "call_123",
|
|
"content": "27 degrees celsius and clear in San Francisco, CA",
|
|
},
|
|
# Now the assistant can reply with the result of the tool call.
|
|
]
|
|
|
|
translated_messages = _gemini_convert_messages_with_history(messages=messages)
|
|
|
|
print(f"\n\ntranslated_messages: {translated_messages}\ntranslated_messages")
|
|
|
|
# assert that the last tool response has the corresponding tool name
|
|
assert (
|
|
translated_messages[-1]["parts"][0]["function_response"]["name"]
|
|
== "get_weather"
|
|
)
|
|
|
|
|
|
def test_prompt_factory():
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
# User asks for their name and weather in San Francisco
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, what is your name and can you tell me the weather?",
|
|
},
|
|
# Assistant replies with a tool call
|
|
{
|
|
"role": "assistant",
|
|
"content": "",
|
|
"tool_calls": [
|
|
{
|
|
"id": "call_123",
|
|
"type": "function",
|
|
"index": 0,
|
|
"function": {
|
|
"name": "get_weather",
|
|
"arguments": '{"location":"San Francisco, CA"}',
|
|
},
|
|
}
|
|
],
|
|
},
|
|
# The result of the tool call is added to the history
|
|
{
|
|
"role": "tool",
|
|
"tool_call_id": "call_123",
|
|
"content": "27 degrees celsius and clear in San Francisco, CA",
|
|
},
|
|
# Now the assistant can reply with the result of the tool call.
|
|
]
|
|
|
|
translated_messages = _gemini_convert_messages_with_history(messages=messages)
|
|
|
|
print(f"\n\ntranslated_messages: {translated_messages}\ntranslated_messages")
|
|
|
|
|
|
def test_prompt_factory_nested():
|
|
messages = [
|
|
{"role": "user", "content": [{"type": "text", "text": "hi"}]},
|
|
{
|
|
"role": "assistant",
|
|
"content": [
|
|
{"type": "text", "text": "Hi! 👋 \n\nHow can I help you today? 😊 \n"}
|
|
],
|
|
},
|
|
{"role": "user", "content": [{"type": "text", "text": "hi 2nd time"}]},
|
|
]
|
|
|
|
translated_messages = _gemini_convert_messages_with_history(messages=messages)
|
|
|
|
print(f"\n\ntranslated_messages: {translated_messages}\ntranslated_messages")
|
|
|
|
for message in translated_messages:
|
|
assert len(message["parts"]) == 1
|
|
assert "text" in message["parts"][0], "Missing 'text' from 'parts'"
|
|
assert isinstance(
|
|
message["parts"][0]["text"], str
|
|
), "'text' value not a string."
|
|
|
|
|
|
def test_get_token_url():
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexLLM,
|
|
)
|
|
|
|
vertex_llm = VertexLLM()
|
|
vertex_ai_project = "adroit-crow-413218"
|
|
vertex_ai_location = "us-central1"
|
|
json_obj = get_vertex_ai_creds_json()
|
|
vertex_credentials = json.dumps(json_obj)
|
|
|
|
should_use_v1beta1_features = vertex_llm.is_using_v1beta1_features(
|
|
optional_params={"cached_content": "hi"}
|
|
)
|
|
|
|
assert should_use_v1beta1_features is True
|
|
|
|
_, url = vertex_llm._get_token_and_url(
|
|
auth_header=None,
|
|
vertex_project=vertex_ai_project,
|
|
vertex_location=vertex_ai_location,
|
|
vertex_credentials=vertex_credentials,
|
|
gemini_api_key="",
|
|
custom_llm_provider="vertex_ai_beta",
|
|
should_use_v1beta1_features=should_use_v1beta1_features,
|
|
api_base=None,
|
|
model="",
|
|
stream=False,
|
|
)
|
|
|
|
print("url=", url)
|
|
|
|
assert "/v1beta1/" in url
|
|
|
|
should_use_v1beta1_features = vertex_llm.is_using_v1beta1_features(
|
|
optional_params={"temperature": 0.1}
|
|
)
|
|
|
|
_, url = vertex_llm._get_token_and_url(
|
|
auth_header=None,
|
|
vertex_project=vertex_ai_project,
|
|
vertex_location=vertex_ai_location,
|
|
vertex_credentials=vertex_credentials,
|
|
gemini_api_key="",
|
|
custom_llm_provider="vertex_ai_beta",
|
|
should_use_v1beta1_features=should_use_v1beta1_features,
|
|
api_base=None,
|
|
model="",
|
|
stream=False,
|
|
)
|
|
|
|
print("url for normal request", url)
|
|
|
|
assert "v1beta1" not in url
|
|
assert "/v1/" in url
|
|
|
|
pass
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_completion_fine_tuned_model():
|
|
# load_vertex_ai_credentials()
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"role": "model",
|
|
"parts": [
|
|
{
|
|
"text": "A canvas vast, a boundless blue,\nWhere clouds paint tales and winds imbue.\nThe sun descends in fiery hue,\nStars shimmer bright, a gentle few.\n\nThe moon ascends, a pearl of light,\nGuiding travelers through the night.\nThe sky embraces, holds all tight,\nA tapestry of wonder, bright."
|
|
}
|
|
],
|
|
},
|
|
"finishReason": "STOP",
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
"probabilityScore": 0.028930664,
|
|
"severity": "HARM_SEVERITY_NEGLIGIBLE",
|
|
"severityScore": 0.041992188,
|
|
},
|
|
# ... other safety ratings ...
|
|
],
|
|
"avgLogprobs": -0.95772853367765187,
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 7,
|
|
"candidatesTokenCount": 71,
|
|
"totalTokenCount": 78,
|
|
},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"contents": [
|
|
{"role": "user", "parts": [{"text": "Write a short poem about the sky"}]}
|
|
],
|
|
"generationConfig": {},
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
# Act: Call the litellm.completion function
|
|
response = await litellm.acompletion(
|
|
model="vertex_ai_beta/4965075652664360960",
|
|
messages=[{"role": "user", "content": "Write a short poem about the sky"}],
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
url, kwargs = mock_post.call_args
|
|
print("url = ", url)
|
|
|
|
# this is the fine-tuned model endpoint
|
|
assert (
|
|
url[0]
|
|
== "https://us-central1-aiplatform.googleapis.com/v1/projects/adroit-crow-413218/locations/us-central1/endpoints/4965075652664360960:generateContent"
|
|
)
|
|
|
|
print("call args = ", kwargs)
|
|
args_to_vertexai = kwargs["json"]
|
|
|
|
print("args to vertex ai call:", args_to_vertexai)
|
|
|
|
assert args_to_vertexai == expected_payload
|
|
assert response.choices[0].message.content.startswith("A canvas vast")
|
|
assert response.choices[0].finish_reason == "stop"
|
|
assert response.usage.total_tokens == 78
|
|
|
|
# Optional: Print for debugging
|
|
print("Arguments passed to Vertex AI:", args_to_vertexai)
|
|
print("Response:", response)
|
|
|
|
|
|
def mock_gemini_request(*args, **kwargs):
|
|
print(f"kwargs: {kwargs}")
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
if "cachedContents" in kwargs["url"]:
|
|
mock_response.json.return_value = {
|
|
"name": "cachedContents/4d2kd477o3pg",
|
|
"model": "models/gemini-1.5-flash-001",
|
|
"createTime": "2024-08-26T22:31:16.147190Z",
|
|
"updateTime": "2024-08-26T22:31:16.147190Z",
|
|
"expireTime": "2024-08-26T22:36:15.548934784Z",
|
|
"displayName": "",
|
|
"usageMetadata": {"totalTokenCount": 323383},
|
|
}
|
|
else:
|
|
mock_response.json.return_value = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"text": "Please provide me with the text of the legal agreement"
|
|
}
|
|
],
|
|
"role": "model",
|
|
},
|
|
"finishReason": "MAX_TOKENS",
|
|
"index": 0,
|
|
"safetyRatings": [
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"probability": "NEGLIGIBLE",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"probability": "NEGLIGIBLE",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"probability": "NEGLIGIBLE",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"probability": "NEGLIGIBLE",
|
|
},
|
|
],
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 40049,
|
|
"candidatesTokenCount": 10,
|
|
"totalTokenCount": 40059,
|
|
"cachedContentTokenCount": 40012,
|
|
},
|
|
}
|
|
|
|
return mock_response
|
|
|
|
|
|
def mock_gemini_list_request(*args, **kwargs):
|
|
from litellm.types.llms.vertex_ai import (
|
|
CachedContent,
|
|
CachedContentListAllResponseBody,
|
|
)
|
|
|
|
print(f"kwargs: {kwargs}")
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json.return_value = CachedContentListAllResponseBody(
|
|
cachedContents=[CachedContent(name="test", displayName="test")]
|
|
)
|
|
|
|
return mock_response
|
|
|
|
|
|
import uuid
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_gemini_context_caching_anthropic_format(sync_mode):
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
gemini_context_caching_messages = [
|
|
# System Message
|
|
{
|
|
"role": "system",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "Here is the full text of a complex legal agreement {}".format(
|
|
uuid.uuid4()
|
|
)
|
|
* 4000,
|
|
"cache_control": {"type": "ephemeral"},
|
|
}
|
|
],
|
|
},
|
|
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What are the key terms and conditions in this agreement?",
|
|
"cache_control": {"type": "ephemeral"},
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
|
|
},
|
|
# The final turn is marked with cache-control, for continuing in followups.
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What are the key terms and conditions in this agreement?",
|
|
}
|
|
],
|
|
},
|
|
]
|
|
if sync_mode:
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
else:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
with patch.object(client, "post", side_effect=mock_gemini_request) as mock_client:
|
|
try:
|
|
if sync_mode:
|
|
response = litellm.completion(
|
|
model="gemini/gemini-1.5-flash-001",
|
|
messages=gemini_context_caching_messages,
|
|
temperature=0.2,
|
|
max_tokens=10,
|
|
client=client,
|
|
)
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="gemini/gemini-1.5-flash-001",
|
|
messages=gemini_context_caching_messages,
|
|
temperature=0.2,
|
|
max_tokens=10,
|
|
client=client,
|
|
)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
assert mock_client.call_count == 2
|
|
|
|
first_call_args = mock_client.call_args_list[0].kwargs
|
|
|
|
print(f"first_call_args: {first_call_args}")
|
|
|
|
assert "cachedContents" in first_call_args["url"]
|
|
|
|
# assert "cache_read_input_tokens" in response.usage
|
|
# assert "cache_creation_input_tokens" in response.usage
|
|
|
|
# # Assert either a cache entry was created or cache was read - changes depending on the anthropic api ttl
|
|
# assert (response.usage.cache_read_input_tokens > 0) or (
|
|
# response.usage.cache_creation_input_tokens > 0
|
|
# )
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_partner_models_httpx_ai21():
|
|
litellm.set_verbose = True
|
|
model = "vertex_ai/jamba-1.5-mini@001"
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, can you tell me the weather in San Francisco?",
|
|
},
|
|
]
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
}
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
"tools": tools,
|
|
"top_p": 0.5,
|
|
}
|
|
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"id": "chat-3d11cf95eb224966937b216d9494fe73",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": " Sure, let me check that for you.",
|
|
"tool_calls": [
|
|
{
|
|
"id": "b5cef16b-5946-4937-b9d5-beeaea871e77",
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"arguments": '{"location": "San Francisco"}',
|
|
},
|
|
}
|
|
],
|
|
},
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": 158,
|
|
"completion_tokens": 36,
|
|
"total_tokens": 194,
|
|
},
|
|
"meta": {"requestDurationMillis": 501},
|
|
"model": "jamba-1.5",
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.acompletion(**data)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
url, kwargs = mock_post.call_args
|
|
print("url = ", url)
|
|
print("call args = ", kwargs)
|
|
|
|
print(kwargs["data"])
|
|
|
|
assert (
|
|
url[0]
|
|
== "https://us-central1-aiplatform.googleapis.com/v1beta1/projects/adroit-crow-413218/locations/us-central1/publishers/ai21/models/jamba-1.5-mini@001:rawPredict"
|
|
)
|
|
|
|
# json loads kwargs
|
|
kwargs["data"] = json.loads(kwargs["data"])
|
|
|
|
assert kwargs["data"] == {
|
|
"model": "jamba-1.5-mini",
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "Your name is Litellm Bot, you are a helpful assistant",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, can you tell me the weather in San Francisco?",
|
|
},
|
|
],
|
|
"top_p": 0.5,
|
|
"tools": [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
}
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
],
|
|
"stream": False,
|
|
}
|
|
|
|
assert response.id == "chat-3d11cf95eb224966937b216d9494fe73"
|
|
assert len(response.choices) == 1
|
|
assert (
|
|
response.choices[0].message.content == " Sure, let me check that for you."
|
|
)
|
|
assert response.choices[0].message.tool_calls[0].function.name == "get_weather"
|
|
assert (
|
|
response.choices[0].message.tool_calls[0].function.arguments
|
|
== '{"location": "San Francisco"}'
|
|
)
|
|
assert response.usage.prompt_tokens == 158
|
|
assert response.usage.completion_tokens == 36
|
|
assert response.usage.total_tokens == 194
|
|
|
|
print(f"response: {response}")
|
|
|
|
|
|
def test_gemini_function_call_parameter_in_messages():
|
|
litellm.set_verbose = True
|
|
load_vertex_ai_credentials()
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "search",
|
|
"description": "Executes searches.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"queries": {
|
|
"type": "array",
|
|
"description": "A list of queries to search for.",
|
|
"items": {"type": "string"},
|
|
},
|
|
},
|
|
"required": ["queries"],
|
|
},
|
|
},
|
|
},
|
|
]
|
|
|
|
# Set up the messages
|
|
messages = [
|
|
{"role": "system", "content": """Use search for most queries."""},
|
|
{"role": "user", "content": """search for weather in boston (use `search`)"""},
|
|
{
|
|
"role": "assistant",
|
|
"content": None,
|
|
"function_call": {
|
|
"name": "search",
|
|
"arguments": '{"queries": ["weather in boston"]}',
|
|
},
|
|
},
|
|
{
|
|
"role": "function",
|
|
"name": "search",
|
|
"content": "The current weather in Boston is 22°F.",
|
|
},
|
|
]
|
|
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
|
|
with patch.object(client, "post", new=MagicMock()) as mock_client:
|
|
try:
|
|
response_stream = completion(
|
|
model="vertex_ai/gemini-1.5-pro",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto",
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
# mock_client.assert_any_call()
|
|
assert {
|
|
"contents": [
|
|
{
|
|
"role": "user",
|
|
"parts": [{"text": "search for weather in boston (use `search`)"}],
|
|
},
|
|
{
|
|
"role": "model",
|
|
"parts": [
|
|
{
|
|
"function_call": {
|
|
"name": "search",
|
|
"args": {
|
|
"fields": {
|
|
"key": "queries",
|
|
"value": {"list_value": ["weather in boston"]},
|
|
}
|
|
},
|
|
}
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"parts": [
|
|
{
|
|
"function_response": {
|
|
"name": "search",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {
|
|
"string_value": "The current weather in Boston is 22°F."
|
|
},
|
|
}
|
|
},
|
|
}
|
|
}
|
|
]
|
|
},
|
|
],
|
|
"system_instruction": {"parts": [{"text": "Use search for most queries."}]},
|
|
"tools": [
|
|
{
|
|
"function_declarations": [
|
|
{
|
|
"name": "search",
|
|
"description": "Executes searches.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"queries": {
|
|
"type": "array",
|
|
"description": "A list of queries to search for.",
|
|
"items": {"type": "string"},
|
|
}
|
|
},
|
|
"required": ["queries"],
|
|
},
|
|
}
|
|
]
|
|
}
|
|
],
|
|
"toolConfig": {"functionCallingConfig": {"mode": "AUTO"}},
|
|
"generationConfig": {},
|
|
} == mock_client.call_args.kwargs["json"]
|
|
|
|
|
|
def test_gemini_function_call_parameter_in_messages_2():
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_ai_non_gemini import (
|
|
_gemini_convert_messages_with_history,
|
|
)
|
|
|
|
messages = [
|
|
{"role": "user", "content": "search for weather in boston (use `search`)"},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Sure, let me check.",
|
|
"function_call": {
|
|
"name": "search",
|
|
"arguments": '{"queries": ["weather in boston"]}',
|
|
},
|
|
},
|
|
{
|
|
"role": "function",
|
|
"name": "search",
|
|
"content": "The weather in Boston is 100 degrees.",
|
|
},
|
|
]
|
|
|
|
returned_contents = _gemini_convert_messages_with_history(messages=messages)
|
|
|
|
assert returned_contents == [
|
|
{
|
|
"role": "user",
|
|
"parts": [{"text": "search for weather in boston (use `search`)"}],
|
|
},
|
|
{
|
|
"role": "model",
|
|
"parts": [
|
|
{"text": "Sure, let me check."},
|
|
{
|
|
"function_call": {
|
|
"name": "search",
|
|
"args": {
|
|
"fields": {
|
|
"key": "queries",
|
|
"value": {"list_value": ["weather in boston"]},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"parts": [
|
|
{
|
|
"function_response": {
|
|
"name": "search",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {
|
|
"string_value": "The weather in Boston is 100 degrees."
|
|
},
|
|
}
|
|
},
|
|
}
|
|
}
|
|
]
|
|
},
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"base_model, metadata",
|
|
[
|
|
(None, {"model_info": {"base_model": "vertex_ai/gemini-1.5-pro"}}),
|
|
("vertex_ai/gemini-1.5-pro", None),
|
|
],
|
|
)
|
|
def test_gemini_finetuned_endpoint(base_model, metadata):
|
|
litellm.set_verbose = True
|
|
load_vertex_ai_credentials()
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
# Set up the messages
|
|
messages = [
|
|
{"role": "system", "content": """Use search for most queries."""},
|
|
{"role": "user", "content": """search for weather in boston (use `search`)"""},
|
|
]
|
|
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
|
|
with patch.object(client, "post", new=MagicMock()) as mock_client:
|
|
try:
|
|
response = completion(
|
|
model="vertex_ai/4965075652664360960",
|
|
messages=messages,
|
|
tool_choice="auto",
|
|
client=client,
|
|
metadata=metadata,
|
|
base_model=base_model,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
print(mock_client.call_args.kwargs)
|
|
|
|
mock_client.assert_called()
|
|
assert mock_client.call_args.kwargs["url"].endswith(
|
|
"endpoints/4965075652664360960:generateContent"
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("api_base", ["", None, "my-custom-proxy-base"])
|
|
def test_custom_api_base(api_base):
|
|
stream = None
|
|
test_endpoint = "my-fake-endpoint"
|
|
vertex_base = VertexBase()
|
|
auth_header, url = vertex_base._check_custom_proxy(
|
|
api_base=api_base,
|
|
custom_llm_provider="gemini",
|
|
gemini_api_key="12324",
|
|
endpoint="",
|
|
stream=stream,
|
|
auth_header=None,
|
|
url="my-fake-endpoint",
|
|
)
|
|
|
|
if api_base:
|
|
assert url == api_base + ":"
|
|
else:
|
|
assert url == test_endpoint
|