litellm/tests/local_testing/test_custom_llm.py
Krish Dholakia 2acb0c0675
Litellm Minor Fixes & Improvements (10/12/2024) (#6179)
* build(model_prices_and_context_window.json): add bedrock llama3.2 pricing

* build(model_prices_and_context_window.json): add bedrock cross region inference pricing

* Revert "(perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165)"

This reverts commit 2a5624af47.

* add azure/gpt-4o-2024-05-13 (#6174)

* LiteLLM Minor Fixes & Improvements (10/10/2024)  (#6158)

* refactor(vertex_ai_partner_models/anthropic): refactor anthropic to use partner model logic

* fix(vertex_ai/): support passing custom api base to partner models

Fixes https://github.com/BerriAI/litellm/issues/4317

* fix(proxy_server.py): Fix prometheus premium user check logic

* docs(prometheus.md): update quick start docs

* fix(custom_llm.py): support passing dynamic api key + api base

* fix(realtime_api/main.py): Add request/response logging for realtime api endpoints

Closes https://github.com/BerriAI/litellm/issues/6081

* feat(openai/realtime): add openai realtime api logging

Closes https://github.com/BerriAI/litellm/issues/6081

* fix(realtime_streaming.py): fix linting errors

* fix(realtime_streaming.py): fix linting errors

* fix: fix linting errors

* fix pattern match router

* Add literalai in the sidebar observability category (#6163)

* fix: add literalai in the sidebar

* fix: typo

* update (#6160)

* Feat: Add Langtrace integration (#5341)

* Feat: Add Langtrace integration

* add langtrace service name

* fix timestamps for traces

* add tests

* Discard Callback + use existing otel logger

* cleanup

* remove print statments

* remove callback

* add docs

* docs

* add logging docs

* format logging

* remove emoji and add litellm proxy example

* format logging

* format `logging.md`

* add langtrace docs to logging.md

* sync conflict

* docs fix

* (perf) move s3 logging to Batch logging + async [94% faster perf under 100 RPS on 1 litellm instance] (#6165)

* fix move s3 to use customLogger

* add basic s3 logging test

* add s3 to custom logger compatible

* use batch logger for s3

* s3 set flush interval and batch size

* fix s3 logging

* add notes on s3 logging

* fix s3 logging

* add basic s3 logging test

* fix s3 type errors

* add test for sync logging on s3

* fix: fix to debug log

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Willy Douhard <willy.douhard@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Ali Waleed <ali@scale3labs.com>

* docs(custom_llm_server.md): update doc on passing custom params

* fix(pass_through_endpoints.py): don't require headers

Fixes https://github.com/BerriAI/litellm/issues/6128

* feat(utils.py): add support for caching rerank endpoints

Closes https://github.com/BerriAI/litellm/issues/6144

* feat(litellm_logging.py'): add response headers for failed requests

Closes https://github.com/BerriAI/litellm/issues/6159

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Willy Douhard <willy.douhard@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Ali Waleed <ali@scale3labs.com>
2024-10-12 11:48:34 -07:00

399 lines
11 KiB
Python

# What is this?
## Unit tests for the CustomLLM class
import asyncio
import os
import sys
import time
import traceback
import openai
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from typing import (
Any,
AsyncGenerator,
AsyncIterator,
Callable,
Coroutine,
Iterator,
Optional,
Union,
)
from unittest.mock import AsyncMock, MagicMock, patch
import httpx
from dotenv import load_dotenv
import litellm
from litellm import (
ChatCompletionDeltaChunk,
ChatCompletionUsageBlock,
CustomLLM,
GenericStreamingChunk,
ModelResponse,
acompletion,
completion,
get_llm_provider,
image_generation,
)
from litellm.utils import ModelResponseIterator
from litellm.types.utils import ImageResponse, ImageObject
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
class CustomModelResponseIterator:
def __init__(self, streaming_response: Union[Iterator, AsyncIterator]):
self.streaming_response = streaming_response
def chunk_parser(self, chunk: Any) -> GenericStreamingChunk:
return GenericStreamingChunk(
text="hello world",
tool_use=None,
is_finished=True,
finish_reason="stop",
usage=ChatCompletionUsageBlock(
prompt_tokens=10, completion_tokens=20, total_tokens=30
),
index=0,
)
# Sync iterator
def __iter__(self):
return self
def __next__(self) -> GenericStreamingChunk:
try:
chunk: Any = self.streaming_response.__next__() # type: ignore
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
return self.chunk_parser(chunk=chunk)
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
# Async iterator
def __aiter__(self):
self.async_response_iterator = self.streaming_response.__aiter__() # type: ignore
return self.streaming_response
async def __anext__(self) -> GenericStreamingChunk:
try:
chunk = await self.async_response_iterator.__anext__()
except StopAsyncIteration:
raise StopAsyncIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
return self.chunk_parser(chunk=chunk)
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
class MyCustomLLM(CustomLLM):
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable[..., Any],
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, openai.Timeout]] = None,
client: Optional[litellm.HTTPHandler] = None,
) -> ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore
async def acompletion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable[..., Any],
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, openai.Timeout]] = None,
client: Optional[litellm.AsyncHTTPHandler] = None,
) -> litellm.ModelResponse:
return litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
mock_response="Hi!",
) # type: ignore
def streaming(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable[..., Any],
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, openai.Timeout]] = None,
client: Optional[litellm.HTTPHandler] = None,
) -> Iterator[GenericStreamingChunk]:
generic_streaming_chunk: GenericStreamingChunk = {
"finish_reason": "stop",
"index": 0,
"is_finished": True,
"text": "Hello world",
"tool_use": None,
"usage": {"completion_tokens": 10, "prompt_tokens": 20, "total_tokens": 30},
}
completion_stream = ModelResponseIterator(
model_response=generic_streaming_chunk # type: ignore
)
custom_iterator = CustomModelResponseIterator(
streaming_response=completion_stream
)
return custom_iterator
async def astreaming( # type: ignore
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable[..., Any],
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
timeout: Optional[Union[float, openai.Timeout]] = None,
client: Optional[litellm.AsyncHTTPHandler] = None,
) -> AsyncIterator[GenericStreamingChunk]: # type: ignore
generic_streaming_chunk: GenericStreamingChunk = {
"finish_reason": "stop",
"index": 0,
"is_finished": True,
"text": "Hello world",
"tool_use": None,
"usage": {"completion_tokens": 10, "prompt_tokens": 20, "total_tokens": 30},
}
yield generic_streaming_chunk # type: ignore
def image_generation(
self,
model: str,
prompt: str,
api_key: Optional[str],
api_base: Optional[str],
model_response: ImageResponse,
optional_params: dict,
logging_obj: Any,
timeout=None,
client: Optional[HTTPHandler] = None,
):
return ImageResponse(
created=int(time.time()),
data=[ImageObject(url="https://example.com/image.png")],
response_ms=1000,
)
async def aimage_generation(
self,
model: str,
prompt: str,
api_key: Optional[str],
api_base: Optional[str],
model_response: ImageResponse,
optional_params: dict,
logging_obj: Any,
timeout=None,
client: Optional[AsyncHTTPHandler] = None,
):
return ImageResponse(
created=int(time.time()),
data=[ImageObject(url="https://example.com/image.png")],
response_ms=1000,
)
def test_get_llm_provider():
""""""
from litellm.utils import custom_llm_setup
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
custom_llm_setup()
model, provider, _, _ = get_llm_provider(model="custom_llm/my-fake-model")
assert provider == "custom_llm"
def test_simple_completion():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = completion(
model="custom_llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
)
assert resp.choices[0].message.content == "Hi!"
@pytest.mark.asyncio
async def test_simple_acompletion():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = await acompletion(
model="custom_llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
)
assert resp.choices[0].message.content == "Hi!"
def test_simple_completion_streaming():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = completion(
model="custom_llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
stream=True,
)
for chunk in resp:
print(chunk)
if chunk.choices[0].finish_reason is None:
assert isinstance(chunk.choices[0].delta.content, str)
else:
assert chunk.choices[0].finish_reason == "stop"
@pytest.mark.asyncio
async def test_simple_completion_async_streaming():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = await litellm.acompletion(
model="custom_llm/my-fake-model",
messages=[{"role": "user", "content": "Hello world!"}],
stream=True,
)
async for chunk in resp:
print(chunk)
if chunk.choices[0].finish_reason is None:
assert isinstance(chunk.choices[0].delta.content, str)
else:
assert chunk.choices[0].finish_reason == "stop"
def test_simple_image_generation():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = image_generation(
model="custom_llm/my-fake-model",
prompt="Hello world",
)
print(resp)
@pytest.mark.asyncio
async def test_simple_image_generation_async():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
resp = await litellm.aimage_generation(
model="custom_llm/my-fake-model",
prompt="Hello world",
)
print(resp)
@pytest.mark.asyncio
async def test_image_generation_async_additional_params():
my_custom_llm = MyCustomLLM()
litellm.custom_provider_map = [
{"provider": "custom_llm", "custom_handler": my_custom_llm}
]
with patch.object(
my_custom_llm, "aimage_generation", new=AsyncMock()
) as mock_client:
try:
resp = await litellm.aimage_generation(
model="custom_llm/my-fake-model",
prompt="Hello world",
api_key="my-api-key",
api_base="my-api-base",
my_custom_param="my-custom-param",
)
print(resp)
except Exception as e:
print(e)
mock_client.assert_awaited_once()
mock_client.call_args.kwargs["api_key"] == "my-api-key"
mock_client.call_args.kwargs["api_base"] == "my-api-base"
mock_client.call_args.kwargs["optional_params"] == {
"my_custom_param": "my-custom-param"
}