litellm/tests/local_testing/test_custom_logger.py
Krish Dholakia fc13c023b7
build(config.yml): add codecov to repo (#6172)
* build(config.yml): add codecov to repo

ensures all commits have testing coverage

* build(config.yml): fix ci config

* build: fix .yml

* build(config.yml): fix ci/cd

* ci(config.yml): specify module to measure code coverage for

* ci(config.yml): update config.yml version

* ci: trigger new run

* ci(config.yml): store combine

* build(config.yml): check files before combine

* ci(config.yml): fix check

* ci(config.yml): add codecov coverage to ci/cd

* ci(config.yml): add codecov to router tests

* ci(config.yml): wait for router testing to complete before running codecov upload

* ci(config.yml): handle multiple coverage.xml's

* fix(router.py): cleanup print stack

* ci(config.yml): fix config

* ci(config.yml): fix config
2024-10-12 14:48:17 -07:00

543 lines
20 KiB
Python

### What this tests ####
import asyncio
import inspect
import os
import sys
import time
import traceback
import pytest
sys.path.insert(0, os.path.abspath("../.."))
import litellm
from litellm import completion, embedding
from litellm.integrations.custom_logger import CustomLogger
class MyCustomHandler(CustomLogger):
complete_streaming_response_in_callback = ""
def __init__(self):
self.success: bool = False # type: ignore
self.failure: bool = False # type: ignore
self.async_success: bool = False # type: ignore
self.async_success_embedding: bool = False # type: ignore
self.async_failure: bool = False # type: ignore
self.async_failure_embedding: bool = False # type: ignore
self.async_completion_kwargs = None # type: ignore
self.async_embedding_kwargs = None # type: ignore
self.async_embedding_response = None # type: ignore
self.async_completion_kwargs_fail = None # type: ignore
self.async_embedding_kwargs_fail = None # type: ignore
self.stream_collected_response = None # type: ignore
self.sync_stream_collected_response = None # type: ignore
self.user = None # type: ignore
self.data_sent_to_api: dict = {}
self.response_cost = 0
def log_pre_api_call(self, model, messages, kwargs):
print("Pre-API Call")
self.data_sent_to_api = kwargs["additional_args"].get("complete_input_dict", {})
def log_post_api_call(self, kwargs, response_obj, start_time, end_time):
print("Post-API Call")
def log_stream_event(self, kwargs, response_obj, start_time, end_time):
print("On Stream")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Success")
self.success = True
if kwargs.get("stream") == True:
self.sync_stream_collected_response = response_obj
print(f"response cost in log_success_event: {kwargs.get('response_cost')}")
self.response_cost = kwargs.get("response_cost", 0)
def log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Failure")
self.failure = True
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async success")
print(f"received kwargs user: {kwargs['user']}")
self.async_success = True
if kwargs.get("model") == "text-embedding-ada-002":
self.async_success_embedding = True
self.async_embedding_kwargs = kwargs
self.async_embedding_response = response_obj
if kwargs.get("stream") == True:
self.stream_collected_response = response_obj
self.async_completion_kwargs = kwargs
self.user = kwargs.get("user", None)
print(
f"response cost in log_async_success_event: {kwargs.get('response_cost')}"
)
self.response_cost = kwargs.get("response_cost", 0)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
print(f"On Async Failure")
self.async_failure = True
if kwargs.get("model") == "text-embedding-ada-002":
self.async_failure_embedding = True
self.async_embedding_kwargs_fail = kwargs
self.async_completion_kwargs_fail = kwargs
class TmpFunction:
complete_streaming_response_in_callback = ""
async_success: bool = False
async def async_test_logging_fn(self, kwargs, completion_obj, start_time, end_time):
print(f"ON ASYNC LOGGING")
self.async_success = True
print(
f'kwargs.get("async_complete_streaming_response"): {kwargs.get("async_complete_streaming_response")}'
)
self.complete_streaming_response_in_callback = kwargs.get(
"async_complete_streaming_response"
)
@pytest.mark.asyncio
async def test_async_chat_openai_stream():
try:
tmp_function = TmpFunction()
litellm.set_verbose = True
litellm.success_callback = [tmp_function.async_test_logging_fn]
complete_streaming_response = ""
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}],
stream=True,
)
async for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
print(complete_streaming_response)
complete_streaming_response = complete_streaming_response.strip("'")
await asyncio.sleep(3)
# problematic line
response1 = tmp_function.complete_streaming_response_in_callback["choices"][0][
"message"
]["content"]
response2 = complete_streaming_response
# assert [ord(c) for c in response1] == [ord(c) for c in response2]
print(f"response1: {response1}")
print(f"response2: {response2}")
assert response1 == response2
assert tmp_function.async_success == True
except Exception as e:
print(e)
pytest.fail(f"An error occurred - {str(e)}\n\n{traceback.format_exc()}")
# test_async_chat_openai_stream()
def test_completion_azure_stream_moderation_failure():
try:
customHandler = MyCustomHandler()
litellm.callbacks = [customHandler]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "how do i kill someone",
},
]
try:
response = completion(
model="azure/chatgpt-v-2",
messages=messages,
mock_response="Exception: content_filter_policy",
stream=True,
)
for chunk in response:
print(f"chunk: {chunk}")
continue
except Exception as e:
print(e)
time.sleep(1)
assert customHandler.failure == True
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_async_custom_handler_stream():
try:
# [PROD Test] - Do not DELETE
# checks if the model response available in the async + stream callbacks is equal to the received response
customHandler2 = MyCustomHandler()
litellm.callbacks = [customHandler2]
litellm.set_verbose = False
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "write 1 sentence about litellm being amazing",
},
]
complete_streaming_response = ""
async def test_1():
nonlocal complete_streaming_response
response = await litellm.acompletion(
model="azure/chatgpt-v-2", messages=messages, stream=True
)
async for chunk in response:
complete_streaming_response += (
chunk["choices"][0]["delta"]["content"] or ""
)
print(complete_streaming_response)
asyncio.run(test_1())
response_in_success_handler = customHandler2.stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0][
"message"
]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
assert response_in_success_handler == complete_streaming_response
except Exception as e:
pytest.fail(f"Error occurred: {e}\n{traceback.format_exc()}")
# test_async_custom_handler_stream()
@pytest.mark.skip(reason="Flaky test")
def test_azure_completion_stream():
# [PROD Test] - Do not DELETE
# test if completion() + sync custom logger get the same complete stream response
try:
# checks if the model response available in the async + stream callbacks is equal to the received response
customHandler2 = MyCustomHandler()
litellm.callbacks = [customHandler2]
litellm.set_verbose = True
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": f"write 1 sentence about litellm being amazing {time.time()}",
},
]
complete_streaming_response = ""
response = litellm.completion(
model="azure/chatgpt-v-2", messages=messages, stream=True
)
for chunk in response:
complete_streaming_response += chunk["choices"][0]["delta"]["content"] or ""
print(complete_streaming_response)
time.sleep(0.5) # wait 1/2 second before checking callbacks
response_in_success_handler = customHandler2.sync_stream_collected_response
response_in_success_handler = response_in_success_handler["choices"][0][
"message"
]["content"]
print("\n\n")
print("response_in_success_handler: ", response_in_success_handler)
print("complete_streaming_response: ", complete_streaming_response)
assert response_in_success_handler == complete_streaming_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.asyncio
async def test_async_custom_handler_completion():
try:
customHandler_success = MyCustomHandler()
customHandler_failure = MyCustomHandler()
# success
assert customHandler_success.async_success == False
litellm.callbacks = [customHandler_success]
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello from litellm test",
}
],
)
await asyncio.sleep(1)
assert (
customHandler_success.async_success == True
), "async success is not set to True even after success"
assert (
customHandler_success.async_completion_kwargs.get("model")
== "gpt-3.5-turbo"
)
# failure
litellm.callbacks = [customHandler_failure]
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "how do i kill someone",
},
]
assert customHandler_failure.async_failure == False
try:
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
api_key="my-bad-key",
)
except Exception:
pass
assert (
customHandler_failure.async_failure == True
), "async failure is not set to True even after failure"
assert (
customHandler_failure.async_completion_kwargs_fail.get("model")
== "gpt-3.5-turbo"
)
assert (
len(
str(customHandler_failure.async_completion_kwargs_fail.get("exception"))
)
> 10
) # expect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
litellm.callbacks = []
print("Passed setting async failure")
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_completion())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding():
try:
customHandler_embedding = MyCustomHandler()
litellm.callbacks = [customHandler_embedding]
# success
assert customHandler_embedding.async_success_embedding == False
response = await litellm.aembedding(
model="text-embedding-ada-002",
input=["hello world"],
)
await asyncio.sleep(1)
assert (
customHandler_embedding.async_success_embedding == True
), "async_success_embedding is not set to True even after success"
assert (
customHandler_embedding.async_embedding_kwargs.get("model")
== "text-embedding-ada-002"
)
assert (
customHandler_embedding.async_embedding_response["usage"]["prompt_tokens"]
== 2
)
print("Passed setting async success: Embedding")
# failure
assert customHandler_embedding.async_failure_embedding == False
try:
response = await litellm.aembedding(
model="text-embedding-ada-002",
input=["hello world"],
api_key="my-bad-key",
)
except Exception:
pass
assert (
customHandler_embedding.async_failure_embedding == True
), "async failure embedding is not set to True even after failure"
assert (
customHandler_embedding.async_embedding_kwargs_fail.get("model")
== "text-embedding-ada-002"
)
assert (
len(
str(
customHandler_embedding.async_embedding_kwargs_fail.get("exception")
)
)
> 10
) # exppect APIError("OpenAIException - Error code: 401 - {'error': {'message': 'Incorrect API key provided: test. You can find your API key at https://platform.openai.com/account/api-keys.', 'type': 'invalid_request_error', 'param': None, 'code': 'invalid_api_key'}}"), 'traceback_exception': 'Traceback (most recent call last):\n File "/Users/ishaanjaffer/Github/litellm/litellm/llms/openai.py", line 269, in acompletion\n response = await openai_aclient.chat.completions.create(**data)\n File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/openai/resources/chat/completions.py", line 119
except Exception as e:
pytest.fail(f"An exception occurred - {str(e)}")
# asyncio.run(test_async_custom_handler_embedding())
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param():
"""
Tests if the openai optional params for embedding - user + encoding_format,
are logged
"""
litellm.set_verbose = True
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="azure/azure-embedding-model", input=["hello world"], user="John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
assert (
customHandler_optional_params.user
== customHandler_optional_params.data_sent_to_api["user"]
)
# asyncio.run(test_async_custom_handler_embedding_optional_param())
@pytest.mark.skip(reason="AWS Account suspended. Pending their approval")
@pytest.mark.asyncio
async def test_async_custom_handler_embedding_optional_param_bedrock():
"""
Tests if the openai optional params for embedding - user + encoding_format,
are logged
but makes sure these are not sent to the non-openai/azure endpoint (raises errors).
"""
litellm.drop_params = True
litellm.set_verbose = True
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
response = await litellm.aembedding(
model="bedrock/amazon.titan-embed-text-v1", input=["hello world"], user="John"
)
await asyncio.sleep(1) # success callback is async
assert customHandler_optional_params.user == "John"
assert "user" not in customHandler_optional_params.data_sent_to_api
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_cost_tracking_with_caching():
"""
Important Test - This tests if that cost is 0 for cached responses
"""
from litellm import Cache
litellm.set_verbose = True
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
customHandler_optional_params = MyCustomHandler()
litellm.callbacks = [customHandler_optional_params]
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {time.time()}",
}
]
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
caching=True,
mock_response="Hey, i'm doing well!",
)
await asyncio.sleep(3) # success callback is async
response_cost = customHandler_optional_params.response_cost
assert response_cost > 0
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
caching=True,
)
await asyncio.sleep(1) # success callback is async
response_cost_2 = customHandler_optional_params.response_cost
assert response_cost_2 == 0
def test_redis_cache_completion_stream():
# Important Test - This tests if we can add to streaming cache, when custom callbacks are set
import random
from litellm import Cache
try:
print("\nrunning test_redis_cache_completion_stream")
litellm.set_verbose = True
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
caching=True,
)
response_1_content = ""
response_1_id = None
for chunk in response1:
response_1_id = chunk.id
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(1) # sleep for 0.1 seconds allow set cache to occur
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
caching=True,
)
response_2_content = ""
response_2_id = None
for chunk in response2:
response_2_id = chunk.id
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print(
f"\nresponse 1: {response_1_content}",
)
print(f"\nresponse 2: {response_2_content}")
assert (
response_1_id == response_2_id
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
# assert (
# response_1_content == response_2_content
# ), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.success_callback = []
litellm._async_success_callback = []
litellm.cache = None
except Exception as e:
print(e)
litellm.success_callback = []
raise e
# test_redis_cache_completion_stream()