forked from phoenix/litellm-mirror
* feat(together_ai/completion): handle together ai completion calls * fix: handle list of int / list of list of int for text completion calls * fix(utils.py): check if base model in bedrock converse model list Fixes https://github.com/BerriAI/litellm/issues/6003 * test(test_optional_params.py): add unit tests for bedrock optional param mapping Fixes https://github.com/BerriAI/litellm/issues/6003 * feat(utils.py): enable passing dummy tool call for anthropic/bedrock calls if tool_use blocks exist Fixes https://github.com/BerriAI/litellm/issues/5388 * fixed an issue with tool use of claude models with anthropic and bedrock (#6013) * fix(utils.py): handle empty schema for anthropic/bedrock Fixes https://github.com/BerriAI/litellm/issues/6012 * fix: fix linting errors * fix: fix linting errors * fix: fix linting errors * fix(proxy_cli.py): fix import route for app + health checks path (#6026) * (testing): Enable testing us.anthropic.claude-3-haiku-20240307-v1:0. (#6018) * fix(proxy_cli.py): fix import route for app + health checks gettsburg.wav Fixes https://github.com/BerriAI/litellm/issues/5999 --------- Co-authored-by: David Manouchehri <david.manouchehri@ai.moda> --------- Co-authored-by: Ved Patwardhan <54766411+vedpatwardhan@users.noreply.github.com> Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
473 lines
17 KiB
Python
473 lines
17 KiB
Python
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
|
|
|
litellm.num_retries = 0
|
|
litellm.cache = None
|
|
# litellm.set_verbose=True
|
|
import json
|
|
|
|
# litellm.success_callback = ["langfuse"]
|
|
|
|
|
|
def get_current_weather(location, unit="fahrenheit"):
|
|
"""Get the current weather in a given location"""
|
|
if "tokyo" in location.lower():
|
|
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
|
|
elif "san francisco" in location.lower():
|
|
return json.dumps(
|
|
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
|
|
)
|
|
elif "paris" in location.lower():
|
|
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
|
|
else:
|
|
return json.dumps({"location": location, "temperature": "unknown"})
|
|
|
|
|
|
# Example dummy function hard coded to return the same weather
|
|
|
|
|
|
# In production, this could be your backend API or an external API
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"gpt-3.5-turbo-1106",
|
|
# "mistral/mistral-large-latest",
|
|
"claude-3-haiku-20240307",
|
|
"gemini/gemini-1.5-pro",
|
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
|
# "groq/llama3-8b-8192",
|
|
],
|
|
)
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_aaparallel_function_call(model):
|
|
try:
|
|
litellm.set_verbose = True
|
|
litellm.modify_params = True
|
|
# Step 1: send the conversation and available functions to the model
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
|
}
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
response = litellm.completion(
|
|
model=model,
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto", # auto is default, but we'll be explicit
|
|
)
|
|
print("Response\n", response)
|
|
response_message = response.choices[0].message
|
|
tool_calls = response_message.tool_calls
|
|
|
|
print("Expecting there to be 3 tool calls")
|
|
assert (
|
|
len(tool_calls) > 0
|
|
) # this has to call the function for SF, Tokyo and paris
|
|
|
|
# Step 2: check if the model wanted to call a function
|
|
print(f"tool_calls: {tool_calls}")
|
|
if tool_calls:
|
|
# Step 3: call the function
|
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
|
available_functions = {
|
|
"get_current_weather": get_current_weather,
|
|
} # only one function in this example, but you can have multiple
|
|
messages.append(
|
|
response_message
|
|
) # extend conversation with assistant's reply
|
|
print("Response message\n", response_message)
|
|
# Step 4: send the info for each function call and function response to the model
|
|
for tool_call in tool_calls:
|
|
function_name = tool_call.function.name
|
|
if function_name not in available_functions:
|
|
# the model called a function that does not exist in available_functions - don't try calling anything
|
|
return
|
|
function_to_call = available_functions[function_name]
|
|
function_args = json.loads(tool_call.function.arguments)
|
|
function_response = function_to_call(
|
|
location=function_args.get("location"),
|
|
unit=function_args.get("unit"),
|
|
)
|
|
messages.append(
|
|
{
|
|
"tool_call_id": tool_call.id,
|
|
"role": "tool",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
print(f"messages: {messages}")
|
|
second_response = litellm.completion(
|
|
model=model,
|
|
messages=messages,
|
|
temperature=0.2,
|
|
seed=22,
|
|
# tools=tools,
|
|
drop_params=True,
|
|
) # get a new response from the model where it can see the function response
|
|
print("second response\n", second_response)
|
|
except litellm.InternalServerError as e:
|
|
print(e)
|
|
except litellm.RateLimitError as e:
|
|
print(e)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_parallel_function_call()
|
|
|
|
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, provider",
|
|
[
|
|
(
|
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
|
"bedrock",
|
|
),
|
|
("claude-3-haiku-20240307", "anthropic"),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"messages, expected_error_msg",
|
|
[
|
|
(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
|
},
|
|
Message(
|
|
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
|
|
role="assistant",
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
index=1,
|
|
function=Function(
|
|
arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="tooluse_Jj98qn6xQlOP_PiQr-w9iA",
|
|
type="function",
|
|
)
|
|
],
|
|
function_call=None,
|
|
),
|
|
{
|
|
"tool_call_id": "tooluse_Jj98qn6xQlOP_PiQr-w9iA",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
|
|
},
|
|
],
|
|
True,
|
|
),
|
|
(
|
|
[
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
|
}
|
|
],
|
|
False,
|
|
),
|
|
],
|
|
)
|
|
def test_parallel_function_call_anthropic_error_msg(
|
|
model, provider, messages, expected_error_msg
|
|
):
|
|
"""
|
|
Anthropic doesn't support tool calling without `tools=` param specified.
|
|
|
|
Ensure this error is thrown when `tools=` param is not specified. But tool call requests are made.
|
|
|
|
Reference Issue: https://github.com/BerriAI/litellm/issues/5747, https://github.com/BerriAI/litellm/issues/5388
|
|
"""
|
|
try:
|
|
litellm.set_verbose = True
|
|
|
|
messages = messages
|
|
|
|
if expected_error_msg:
|
|
with pytest.raises(litellm.UnsupportedParamsError) as e:
|
|
second_response = litellm.completion(
|
|
model=model,
|
|
messages=messages,
|
|
temperature=0.2,
|
|
seed=22,
|
|
drop_params=True,
|
|
) # get a new response from the model where it can see the function response
|
|
print("second response\n", second_response)
|
|
else:
|
|
second_response = litellm.completion(
|
|
model=model,
|
|
messages=messages,
|
|
temperature=0.2,
|
|
seed=22,
|
|
drop_params=True,
|
|
) # get a new response from the model where it can see the function response
|
|
print("second response\n", second_response)
|
|
except litellm.InternalServerError as e:
|
|
print(e)
|
|
except litellm.RateLimitError as e:
|
|
print(e)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_parallel_function_call_stream():
|
|
try:
|
|
litellm.set_verbose = True
|
|
# Step 1: send the conversation and available functions to the model
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
|
}
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo-1106",
|
|
messages=messages,
|
|
tools=tools,
|
|
stream=True,
|
|
tool_choice="auto", # auto is default, but we'll be explicit
|
|
complete_response=True,
|
|
)
|
|
print("Response\n", response)
|
|
# for chunk in response:
|
|
# print(chunk)
|
|
response_message = response.choices[0].message
|
|
tool_calls = response_message.tool_calls
|
|
|
|
print("length of tool calls", len(tool_calls))
|
|
print("Expecting there to be 3 tool calls")
|
|
assert (
|
|
len(tool_calls) > 1
|
|
) # this has to call the function for SF, Tokyo and parise
|
|
|
|
# Step 2: check if the model wanted to call a function
|
|
if tool_calls:
|
|
# Step 3: call the function
|
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
|
available_functions = {
|
|
"get_current_weather": get_current_weather,
|
|
} # only one function in this example, but you can have multiple
|
|
messages.append(
|
|
response_message
|
|
) # extend conversation with assistant's reply
|
|
print("Response message\n", response_message)
|
|
# Step 4: send the info for each function call and function response to the model
|
|
for tool_call in tool_calls:
|
|
function_name = tool_call.function.name
|
|
function_to_call = available_functions[function_name]
|
|
function_args = json.loads(tool_call.function.arguments)
|
|
function_response = function_to_call(
|
|
location=function_args.get("location"),
|
|
unit=function_args.get("unit"),
|
|
)
|
|
messages.append(
|
|
{
|
|
"tool_call_id": tool_call.id,
|
|
"role": "tool",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
print(f"messages: {messages}")
|
|
second_response = litellm.completion(
|
|
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
|
|
) # get a new response from the model where it can see the function response
|
|
print("second response\n", second_response)
|
|
return second_response
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_parallel_function_call_stream()
|
|
|
|
|
|
@pytest.mark.skip(
|
|
reason="Flaky test. Groq function calling is not reliable for ci/cd testing."
|
|
)
|
|
def test_groq_parallel_function_call():
|
|
litellm.set_verbose = True
|
|
try:
|
|
# Step 1: send the conversation and available functions to the model
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco?",
|
|
},
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
response = litellm.completion(
|
|
model="groq/llama2-70b-4096",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto", # auto is default, but we'll be explicit
|
|
)
|
|
print("Response\n", response)
|
|
response_message = response.choices[0].message
|
|
if hasattr(response_message, "tool_calls"):
|
|
tool_calls = response_message.tool_calls
|
|
|
|
assert isinstance(
|
|
response.choices[0].message.tool_calls[0].function.name, str
|
|
)
|
|
assert isinstance(
|
|
response.choices[0].message.tool_calls[0].function.arguments, str
|
|
)
|
|
|
|
print("length of tool calls", len(tool_calls))
|
|
|
|
# Step 2: check if the model wanted to call a function
|
|
if tool_calls:
|
|
# Step 3: call the function
|
|
# Note: the JSON response may not always be valid; be sure to handle errors
|
|
available_functions = {
|
|
"get_current_weather": get_current_weather,
|
|
} # only one function in this example, but you can have multiple
|
|
messages.append(
|
|
response_message
|
|
) # extend conversation with assistant's reply
|
|
print("Response message\n", response_message)
|
|
# Step 4: send the info for each function call and function response to the model
|
|
for tool_call in tool_calls:
|
|
function_name = tool_call.function.name
|
|
function_to_call = available_functions[function_name]
|
|
function_args = json.loads(tool_call.function.arguments)
|
|
function_response = function_to_call(
|
|
location=function_args.get("location"),
|
|
unit=function_args.get("unit"),
|
|
)
|
|
|
|
messages.append(
|
|
{
|
|
"tool_call_id": tool_call.id,
|
|
"role": "tool",
|
|
"name": function_name,
|
|
"content": function_response,
|
|
}
|
|
) # extend conversation with function response
|
|
print(f"messages: {messages}")
|
|
second_response = litellm.completion(
|
|
model="groq/llama2-70b-4096", messages=messages
|
|
) # get a new response from the model where it can see the function response
|
|
print("second response\n", second_response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
|
"claude-3-haiku-20240307",
|
|
],
|
|
)
|
|
def test_anthropic_function_call_with_no_schema(model):
|
|
"""
|
|
Relevant Issue: https://github.com/BerriAI/litellm/issues/6012
|
|
"""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in New York",
|
|
},
|
|
}
|
|
]
|
|
messages = [
|
|
{"role": "user", "content": "What is the current temperature in New York?"}
|
|
]
|
|
completion(model=model, messages=messages, tools=tools, tool_choice="auto")
|