forked from phoenix/litellm-mirror
235 lines
7.8 KiB
Python
235 lines
7.8 KiB
Python
import io
|
|
import os
|
|
import sys
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
import asyncio
|
|
import logging
|
|
import uuid
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import completion
|
|
from litellm._logging import verbose_logger
|
|
from litellm.integrations.langsmith import LangsmithLogger
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
|
|
|
|
verbose_logger.setLevel(logging.DEBUG)
|
|
|
|
litellm.set_verbose = True
|
|
import time
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_langsmith_queue_logging():
|
|
try:
|
|
# Initialize LangsmithLogger
|
|
test_langsmith_logger = LangsmithLogger()
|
|
|
|
litellm.callbacks = [test_langsmith_logger]
|
|
test_langsmith_logger.batch_size = 6
|
|
litellm.set_verbose = True
|
|
|
|
# Make multiple calls to ensure we don't hit the batch size
|
|
for _ in range(5):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Test message"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock response",
|
|
)
|
|
|
|
await asyncio.sleep(3)
|
|
|
|
# Check that logs are in the queue
|
|
assert len(test_langsmith_logger.log_queue) == 5
|
|
|
|
# Now make calls to exceed the batch size
|
|
for _ in range(3):
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Test message"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock response",
|
|
)
|
|
|
|
# Wait a short time for any asynchronous operations to complete
|
|
await asyncio.sleep(1)
|
|
|
|
print(
|
|
"Length of langsmith log queue: {}".format(
|
|
len(test_langsmith_logger.log_queue)
|
|
)
|
|
)
|
|
# Check that the queue was flushed after exceeding batch size
|
|
assert len(test_langsmith_logger.log_queue) < 5
|
|
|
|
# Clean up
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
await cb.async_httpx_client.client.aclose()
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
|
|
@pytest.mark.asyncio()
|
|
async def test_async_langsmith_logging():
|
|
try:
|
|
test_langsmith_logger = LangsmithLogger()
|
|
run_id = str(uuid.uuid4())
|
|
litellm.set_verbose = True
|
|
litellm.callbacks = ["langsmith"]
|
|
response = await litellm.acompletion(
|
|
model="claude-instant-1.2",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
metadata={
|
|
"id": run_id,
|
|
"tags": ["tag1", "tag2"],
|
|
"user_api_key": "6eb81e014497d89f3cc1aa9da7c2b37bda6b7fea68e4b710d33d94201e68970c",
|
|
"user_api_key_alias": "ishaans-langmsith-key",
|
|
"user_api_end_user_max_budget": None,
|
|
"litellm_api_version": "1.40.19",
|
|
"global_max_parallel_requests": None,
|
|
"user_api_key_user_id": "admin",
|
|
"user_api_key_org_id": None,
|
|
"user_api_key_team_id": "dbe2f686-a686-4896-864a-4c3924458709",
|
|
"user_api_key_team_alias": "testing-team",
|
|
},
|
|
)
|
|
print(response)
|
|
await asyncio.sleep(3)
|
|
|
|
print("run_id", run_id)
|
|
logged_run_on_langsmith = test_langsmith_logger.get_run_by_id(run_id=run_id)
|
|
|
|
print("logged_run_on_langsmith", logged_run_on_langsmith)
|
|
|
|
print("fields in logged_run_on_langsmith", logged_run_on_langsmith.keys())
|
|
|
|
input_fields_on_langsmith = logged_run_on_langsmith.get("inputs")
|
|
extra_fields_on_langsmith = logged_run_on_langsmith.get("extra").get(
|
|
"invocation_params"
|
|
)
|
|
|
|
print("\nLogged INPUT ON LANGSMITH", input_fields_on_langsmith)
|
|
|
|
print("\nextra fields on langsmith", extra_fields_on_langsmith)
|
|
|
|
assert isinstance(input_fields_on_langsmith, dict)
|
|
assert "api_key" not in input_fields_on_langsmith
|
|
assert "api_key" not in extra_fields_on_langsmith
|
|
|
|
# assert user_api_key in extra_fields_on_langsmith
|
|
assert "user_api_key" in extra_fields_on_langsmith
|
|
assert "user_api_key_user_id" in extra_fields_on_langsmith
|
|
assert "user_api_key_team_alias" in extra_fields_on_langsmith
|
|
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
await cb.async_httpx_client.client.aclose()
|
|
# test_langsmith_logger.async_httpx_client.close()
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_langsmith_logging()
|
|
|
|
|
|
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
|
|
def test_async_langsmith_logging_with_metadata():
|
|
try:
|
|
litellm.success_callback = ["langsmith"]
|
|
litellm.set_verbose = True
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
)
|
|
print(response)
|
|
time.sleep(3)
|
|
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
cb.async_httpx_client.close()
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
print(e)
|
|
|
|
|
|
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
|
|
@pytest.mark.parametrize("sync_mode", [False, True])
|
|
@pytest.mark.asyncio
|
|
async def test_async_langsmith_logging_with_streaming_and_metadata(sync_mode):
|
|
try:
|
|
test_langsmith_logger = LangsmithLogger()
|
|
litellm.success_callback = ["langsmith"]
|
|
litellm.set_verbose = True
|
|
run_id = str(uuid.uuid4())
|
|
|
|
messages = [{"role": "user", "content": "what llm are u"}]
|
|
if sync_mode is True:
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
stream=True,
|
|
metadata={"id": run_id},
|
|
)
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
cb.async_httpx_client = AsyncHTTPHandler()
|
|
for chunk in response:
|
|
continue
|
|
time.sleep(3)
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
mock_response="This is a mock request",
|
|
stream=True,
|
|
metadata={"id": run_id},
|
|
)
|
|
for cb in litellm.callbacks:
|
|
if isinstance(cb, LangsmithLogger):
|
|
cb.async_httpx_client = AsyncHTTPHandler()
|
|
async for chunk in response:
|
|
continue
|
|
await asyncio.sleep(3)
|
|
|
|
print("run_id", run_id)
|
|
logged_run_on_langsmith = test_langsmith_logger.get_run_by_id(run_id=run_id)
|
|
|
|
print("logged_run_on_langsmith", logged_run_on_langsmith)
|
|
|
|
print("fields in logged_run_on_langsmith", logged_run_on_langsmith.keys())
|
|
|
|
input_fields_on_langsmith = logged_run_on_langsmith.get("inputs")
|
|
|
|
extra_fields_on_langsmith = logged_run_on_langsmith.get("extra").get(
|
|
"invocation_params"
|
|
)
|
|
|
|
assert logged_run_on_langsmith.get("run_type") == "llm"
|
|
print("\nLogged INPUT ON LANGSMITH", input_fields_on_langsmith)
|
|
|
|
print("\nextra fields on langsmith", extra_fields_on_langsmith)
|
|
|
|
assert isinstance(input_fields_on_langsmith, dict)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
print(e)
|