litellm/tests/local_testing/test_langsmith.py

235 lines
7.8 KiB
Python

import io
import os
import sys
sys.path.insert(0, os.path.abspath("../.."))
import asyncio
import logging
import uuid
import pytest
import litellm
from litellm import completion
from litellm._logging import verbose_logger
from litellm.integrations.langsmith import LangsmithLogger
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
verbose_logger.setLevel(logging.DEBUG)
litellm.set_verbose = True
import time
@pytest.mark.asyncio
async def test_langsmith_queue_logging():
try:
# Initialize LangsmithLogger
test_langsmith_logger = LangsmithLogger()
litellm.callbacks = [test_langsmith_logger]
test_langsmith_logger.batch_size = 6
litellm.set_verbose = True
# Make multiple calls to ensure we don't hit the batch size
for _ in range(5):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Test message"}],
max_tokens=10,
temperature=0.2,
mock_response="This is a mock response",
)
await asyncio.sleep(3)
# Check that logs are in the queue
assert len(test_langsmith_logger.log_queue) == 5
# Now make calls to exceed the batch size
for _ in range(3):
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Test message"}],
max_tokens=10,
temperature=0.2,
mock_response="This is a mock response",
)
# Wait a short time for any asynchronous operations to complete
await asyncio.sleep(1)
print(
"Length of langsmith log queue: {}".format(
len(test_langsmith_logger.log_queue)
)
)
# Check that the queue was flushed after exceeding batch size
assert len(test_langsmith_logger.log_queue) < 5
# Clean up
for cb in litellm.callbacks:
if isinstance(cb, LangsmithLogger):
await cb.async_httpx_client.client.aclose()
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
@pytest.mark.asyncio()
async def test_async_langsmith_logging():
try:
test_langsmith_logger = LangsmithLogger()
run_id = str(uuid.uuid4())
litellm.set_verbose = True
litellm.callbacks = ["langsmith"]
response = await litellm.acompletion(
model="claude-instant-1.2",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
metadata={
"id": run_id,
"tags": ["tag1", "tag2"],
"user_api_key": "6eb81e014497d89f3cc1aa9da7c2b37bda6b7fea68e4b710d33d94201e68970c",
"user_api_key_alias": "ishaans-langmsith-key",
"user_api_end_user_max_budget": None,
"litellm_api_version": "1.40.19",
"global_max_parallel_requests": None,
"user_api_key_user_id": "admin",
"user_api_key_org_id": None,
"user_api_key_team_id": "dbe2f686-a686-4896-864a-4c3924458709",
"user_api_key_team_alias": "testing-team",
},
)
print(response)
await asyncio.sleep(3)
print("run_id", run_id)
logged_run_on_langsmith = test_langsmith_logger.get_run_by_id(run_id=run_id)
print("logged_run_on_langsmith", logged_run_on_langsmith)
print("fields in logged_run_on_langsmith", logged_run_on_langsmith.keys())
input_fields_on_langsmith = logged_run_on_langsmith.get("inputs")
extra_fields_on_langsmith = logged_run_on_langsmith.get("extra").get(
"invocation_params"
)
print("\nLogged INPUT ON LANGSMITH", input_fields_on_langsmith)
print("\nextra fields on langsmith", extra_fields_on_langsmith)
assert isinstance(input_fields_on_langsmith, dict)
assert "api_key" not in input_fields_on_langsmith
assert "api_key" not in extra_fields_on_langsmith
# assert user_api_key in extra_fields_on_langsmith
assert "user_api_key" in extra_fields_on_langsmith
assert "user_api_key_user_id" in extra_fields_on_langsmith
assert "user_api_key_team_alias" in extra_fields_on_langsmith
for cb in litellm.callbacks:
if isinstance(cb, LangsmithLogger):
await cb.async_httpx_client.client.aclose()
# test_langsmith_logger.async_httpx_client.close()
except Exception as e:
print(e)
pytest.fail(f"Error occurred: {e}")
# test_langsmith_logging()
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
def test_async_langsmith_logging_with_metadata():
try:
litellm.success_callback = ["langsmith"]
litellm.set_verbose = True
response = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "what llm are u"}],
max_tokens=10,
temperature=0.2,
)
print(response)
time.sleep(3)
for cb in litellm.callbacks:
if isinstance(cb, LangsmithLogger):
cb.async_httpx_client.close()
except Exception as e:
pytest.fail(f"Error occurred: {e}")
print(e)
@pytest.mark.skip(reason="Flaky test. covered by unit tests on custom logger.")
@pytest.mark.parametrize("sync_mode", [False, True])
@pytest.mark.asyncio
async def test_async_langsmith_logging_with_streaming_and_metadata(sync_mode):
try:
test_langsmith_logger = LangsmithLogger()
litellm.success_callback = ["langsmith"]
litellm.set_verbose = True
run_id = str(uuid.uuid4())
messages = [{"role": "user", "content": "what llm are u"}]
if sync_mode is True:
response = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=10,
temperature=0.2,
stream=True,
metadata={"id": run_id},
)
for cb in litellm.callbacks:
if isinstance(cb, LangsmithLogger):
cb.async_httpx_client = AsyncHTTPHandler()
for chunk in response:
continue
time.sleep(3)
else:
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=10,
temperature=0.2,
mock_response="This is a mock request",
stream=True,
metadata={"id": run_id},
)
for cb in litellm.callbacks:
if isinstance(cb, LangsmithLogger):
cb.async_httpx_client = AsyncHTTPHandler()
async for chunk in response:
continue
await asyncio.sleep(3)
print("run_id", run_id)
logged_run_on_langsmith = test_langsmith_logger.get_run_by_id(run_id=run_id)
print("logged_run_on_langsmith", logged_run_on_langsmith)
print("fields in logged_run_on_langsmith", logged_run_on_langsmith.keys())
input_fields_on_langsmith = logged_run_on_langsmith.get("inputs")
extra_fields_on_langsmith = logged_run_on_langsmith.get("extra").get(
"invocation_params"
)
assert logged_run_on_langsmith.get("run_type") == "llm"
print("\nLogged INPUT ON LANGSMITH", input_fields_on_langsmith)
print("\nextra fields on langsmith", extra_fields_on_langsmith)
assert isinstance(input_fields_on_langsmith, dict)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
print(e)