forked from phoenix/litellm-mirror
118 lines
3 KiB
Python
118 lines
3 KiB
Python
import io
|
|
import os
|
|
import sys
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
import litellm
|
|
from litellm import completion
|
|
|
|
litellm.failure_callback = ["lunary"]
|
|
litellm.success_callback = ["lunary"]
|
|
litellm.set_verbose = True
|
|
|
|
|
|
def test_lunary_logging():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
user="test-user",
|
|
)
|
|
print(response)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
test_lunary_logging()
|
|
|
|
|
|
def test_lunary_template():
|
|
import lunary
|
|
|
|
try:
|
|
template = lunary.render_template("test-template", {"question": "Hello!"})
|
|
response = completion(**template)
|
|
print(response)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def test_lunary_logging_with_metadata():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
metadata={
|
|
"run_name": "litellmRUN",
|
|
"project_name": "litellm-completion",
|
|
"tags": ["tag1", "tag2"],
|
|
},
|
|
)
|
|
print(response)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
def test_lunary_with_tools():
|
|
import litellm
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
|
|
}
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo-1106",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto", # auto is default, but we'll be explicit
|
|
)
|
|
|
|
response_message = response.choices[0].message
|
|
print("\nLLM Response:\n", response.choices[0].message)
|
|
|
|
|
|
def test_lunary_logging_with_streaming_and_metadata():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "what llm are u"}],
|
|
max_tokens=10,
|
|
temperature=0.2,
|
|
metadata={
|
|
"run_name": "litellmRUN",
|
|
"project_name": "litellm-completion",
|
|
},
|
|
stream=True,
|
|
)
|
|
for chunk in response:
|
|
continue
|
|
except Exception as e:
|
|
print(e)
|