forked from phoenix/litellm-mirror
175 lines
4.8 KiB
Python
175 lines
4.8 KiB
Python
import asyncio
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
|
|
## for ollama we can't test making the completion call
|
|
from litellm.utils import EmbeddingResponse, get_llm_provider, get_optional_params
|
|
|
|
|
|
def test_get_ollama_params():
|
|
try:
|
|
converted_params = get_optional_params(
|
|
custom_llm_provider="ollama",
|
|
model="llama2",
|
|
max_tokens=20,
|
|
temperature=0.5,
|
|
stream=True,
|
|
)
|
|
print("Converted params", converted_params)
|
|
assert converted_params == {
|
|
"num_predict": 20,
|
|
"stream": True,
|
|
"temperature": 0.5,
|
|
}, f"{converted_params} != {'num_predict': 20, 'stream': True, 'temperature': 0.5}"
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_get_ollama_params()
|
|
|
|
|
|
def test_get_ollama_model():
|
|
try:
|
|
model, custom_llm_provider, _, _ = get_llm_provider("ollama/code-llama-22")
|
|
print("Model", "custom_llm_provider", model, custom_llm_provider)
|
|
assert custom_llm_provider == "ollama", f"{custom_llm_provider} != ollama"
|
|
assert model == "code-llama-22", f"{model} != code-llama-22"
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_get_ollama_model()
|
|
|
|
|
|
def test_ollama_json_mode():
|
|
# assert that format: json gets passed as is to ollama
|
|
try:
|
|
converted_params = get_optional_params(
|
|
custom_llm_provider="ollama", model="llama2", format="json", temperature=0.5
|
|
)
|
|
print("Converted params", converted_params)
|
|
assert converted_params == {
|
|
"temperature": 0.5,
|
|
"format": "json",
|
|
}, f"{converted_params} != {'temperature': 0.5, 'format': 'json'}"
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_ollama_json_mode()
|
|
|
|
|
|
mock_ollama_embedding_response = EmbeddingResponse(model="ollama/nomic-embed-text")
|
|
|
|
|
|
@mock.patch(
|
|
"litellm.llms.ollama.ollama_embeddings",
|
|
return_value=mock_ollama_embedding_response,
|
|
)
|
|
def test_ollama_embeddings(mock_embeddings):
|
|
# assert that ollama_embeddings is called with the right parameters
|
|
try:
|
|
embeddings = litellm.embedding(
|
|
model="ollama/nomic-embed-text", input=["hello world"]
|
|
)
|
|
print(embeddings)
|
|
mock_embeddings.assert_called_once_with(
|
|
api_base="http://localhost:11434",
|
|
model="nomic-embed-text",
|
|
prompts=["hello world"],
|
|
optional_params=mock.ANY,
|
|
logging_obj=mock.ANY,
|
|
model_response=mock.ANY,
|
|
encoding=mock.ANY,
|
|
)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_ollama_embeddings()
|
|
|
|
|
|
@mock.patch(
|
|
"litellm.llms.ollama.ollama_aembeddings",
|
|
return_value=mock_ollama_embedding_response,
|
|
)
|
|
def test_ollama_aembeddings(mock_aembeddings):
|
|
# assert that ollama_aembeddings is called with the right parameters
|
|
try:
|
|
embeddings = asyncio.run(
|
|
litellm.aembedding(model="ollama/nomic-embed-text", input=["hello world"])
|
|
)
|
|
print(embeddings)
|
|
mock_aembeddings.assert_called_once_with(
|
|
api_base="http://localhost:11434",
|
|
model="nomic-embed-text",
|
|
prompts=["hello world"],
|
|
optional_params=mock.ANY,
|
|
logging_obj=mock.ANY,
|
|
model_response=mock.ANY,
|
|
encoding=mock.ANY,
|
|
)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_ollama_aembeddings()
|
|
|
|
|
|
@pytest.mark.skip(reason="local only test")
|
|
def test_ollama_chat_function_calling():
|
|
import json
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {"type": "string"},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
},
|
|
]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "What's the weather like in San Francisco?"}
|
|
]
|
|
|
|
response = litellm.completion(
|
|
model="ollama_chat/llama3.1",
|
|
messages=messages,
|
|
tools=tools,
|
|
)
|
|
tool_calls = response.choices[0].message.get("tool_calls", None)
|
|
|
|
assert tool_calls is not None
|
|
|
|
print(json.loads(tool_calls[0].function.arguments))
|
|
|
|
print(response)
|