litellm/tests/local_testing/test_provider_specific_config.py
Krish Dholakia d57be47b0f
Litellm ruff linting enforcement (#5992)
* ci(config.yml): add a 'check_code_quality' step

Addresses https://github.com/BerriAI/litellm/issues/5991

* ci(config.yml): check why circle ci doesn't pick up this test

* ci(config.yml): fix to run 'check_code_quality' tests

* fix(__init__.py): fix unprotected import

* fix(__init__.py): don't remove unused imports

* build(ruff.toml): update ruff.toml to ignore unused imports

* fix: fix: ruff + pyright - fix linting + type-checking errors

* fix: fix linting errors

* fix(lago.py): fix module init error

* fix: fix linting errors

* ci(config.yml): cd into correct dir for checks

* fix(proxy_server.py): fix linting error

* fix(utils.py): fix bare except

causes ruff linting errors

* fix: ruff - fix remaining linting errors

* fix(clickhouse.py): use standard logging object

* fix(__init__.py): fix unprotected import

* fix: ruff - fix linting errors

* fix: fix linting errors

* ci(config.yml): cleanup code qa step (formatting handled in local_testing)

* fix(_health_endpoints.py): fix ruff linting errors

* ci(config.yml): just use ruff in check_code_quality pipeline for now

* build(custom_guardrail.py): include missing file

* style(embedding_handler.py): fix ruff check
2024-10-01 19:44:20 -04:00

806 lines
25 KiB
Python

#### What this tests ####
# This tests setting provider specific configs across providers
# There are 2 types of tests - changing config dynamically or by setting class variables
import os
import sys
import traceback
import pytest
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from unittest.mock import AsyncMock, MagicMock, patch
import litellm
from litellm import RateLimitError, completion
# Huggingface - Expensive to deploy models and keep them running. Maybe we can try doing this via baseten??
# def hf_test_completion_tgi():
# litellm.HuggingfaceConfig(max_new_tokens=200)
# litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
# messages=[{ "content": "Hello, how are you?","role": "user"}],
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
# max_tokens=10
# )
# # Add any assertions here to check the response
# print(response_1)
# response_1_text = response_1.choices[0].message.content
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
# messages=[{ "content": "Hello, how are you?","role": "user"}],
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
# )
# # Add any assertions here to check the response
# print(response_2)
# response_2_text = response_2.choices[0].message.content
# assert len(response_2_text) > len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# hf_test_completion_tgi()
# Anthropic
def claude_test_completion():
litellm.AnthropicConfig(max_tokens_to_sample=200)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="claude-instant-1.2",
messages=[{"content": "Hello, how are you?", "role": "user"}],
max_tokens=10,
)
# Add any assertions here to check the response
print(response_1)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="claude-instant-1.2",
messages=[{"content": "Hello, how are you?", "role": "user"}],
)
# Add any assertions here to check the response
print(response_2)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
try:
response_3 = litellm.completion(
model="claude-instant-1.2",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
except Exception as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# claude_test_completion()
# Replicate
def replicate_test_completion():
litellm.ReplicateConfig(max_new_tokens=200)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{"content": "Hello, how are you?", "role": "user"}],
max_tokens=10,
)
# Add any assertions here to check the response
print(response_1)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{"content": "Hello, how are you?", "role": "user"}],
)
# Add any assertions here to check the response
print(response_2)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
try:
response_3 = litellm.completion(
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
except Exception:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# replicate_test_completion()
# Cohere
def cohere_test_completion():
# litellm.CohereConfig(max_tokens=200)
litellm.set_verbose = True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="command-nightly",
messages=[{"content": "Hello, how are you?", "role": "user"}],
max_tokens=10,
)
response_1_text = response_1.choices[0].message.content
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="command-nightly",
messages=[{"content": "Hello, how are you?", "role": "user"}],
)
response_2_text = response_2.choices[0].message.content
assert len(response_2_text) > len(response_1_text)
response_3 = litellm.completion(
model="command-nightly",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# cohere_test_completion()
# AI21
def ai21_test_completion():
litellm.AI21Config(maxTokens=10)
litellm.set_verbose = True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="j2-mid",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="j2-mid",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(
model="j2-light",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# ai21_test_completion()
# TogetherAI
def togetherai_test_completion():
litellm.TogetherAIConfig(max_tokens=10)
litellm.set_verbose = True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
try:
response_3 = litellm.completion(
model="together_ai/togethercomputer/llama-2-70b-chat",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
pytest.fail(f"Error not raised when n=2 passed to provider")
except Exception:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# togetherai_test_completion()
# Palm
# palm_test_completion()
# NLP Cloud
def nlp_cloud_test_completion():
litellm.NLPCloudConfig(max_length=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="dolphin",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="dolphin",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
try:
response_3 = litellm.completion(
model="dolphin",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
pytest.fail(f"Error not raised when n=2 passed to provider")
except Exception:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# nlp_cloud_test_completion()
# AlephAlpha
def aleph_alpha_test_completion():
litellm.AlephAlphaConfig(maximum_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="luminous-base",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="luminous-base",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(
model="luminous-base",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# aleph_alpha_test_completion()
# Petals - calls are too slow, will cause circle ci to fail due to delay. Test locally.
# def petals_completion():
# litellm.PetalsConfig(max_new_tokens=10)
# # litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="petals/petals-team/StableBeluga2",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# api_base="https://chat.petals.dev/api/v1/generate",
# max_tokens=100
# )
# response_1_text = response_1.choices[0].message.content
# print(f"response_1_text: {response_1_text}")
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="petals/petals-team/StableBeluga2",
# api_base="https://chat.petals.dev/api/v1/generate",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# )
# response_2_text = response_2.choices[0].message.content
# print(f"response_2_text: {response_2_text}")
# assert len(response_2_text) < len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# petals_completion()
# VertexAI
# We don't have vertex ai configured for circle ci yet -- need to figure this out.
# def vertex_ai_test_completion():
# litellm.VertexAIConfig(max_output_tokens=10)
# # litellm.set_verbose=True
# try:
# # OVERRIDE WITH DYNAMIC MAX TOKENS
# response_1 = litellm.completion(
# model="chat-bison",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# max_tokens=100
# )
# response_1_text = response_1.choices[0].message.content
# print(f"response_1_text: {response_1_text}")
# # USE CONFIG TOKENS
# response_2 = litellm.completion(
# model="chat-bison",
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
# )
# response_2_text = response_2.choices[0].message.content
# print(f"response_2_text: {response_2_text}")
# assert len(response_2_text) < len(response_1_text)
# except Exception as e:
# pytest.fail(f"Error occurred: {e}")
# vertex_ai_test_completion()
# Sagemaker
@pytest.mark.skip(reason="AWS Suspended Account")
def sagemaker_test_completion():
litellm.SagemakerConfig(max_new_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# sagemaker_test_completion()
def test_sagemaker_default_region():
"""
If no regions are specified in config or in environment, the default region is us-west-2
"""
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
response = litellm.completion(
model="sagemaker/mock-endpoint",
messages=[{"content": "Hello, world!", "role": "user"}],
)
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
print("url=", kwargs["url"])
assert (
kwargs["url"]
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/mock-endpoint/invocations"
)
# test_sagemaker_default_region()
def test_sagemaker_environment_region():
"""
If a region is specified in the environment, use that region instead of us-west-2
"""
expected_region = "us-east-1"
os.environ["AWS_REGION_NAME"] = expected_region
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
response = litellm.completion(
model="sagemaker/mock-endpoint",
messages=[{"content": "Hello, world!", "role": "user"}],
)
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
print("url=", kwargs["url"])
assert (
kwargs["url"]
== f"https://runtime.sagemaker.{expected_region}.amazonaws.com/endpoints/mock-endpoint/invocations"
)
del os.environ["AWS_REGION_NAME"] # cleanup
# test_sagemaker_environment_region()
def test_sagemaker_config_region():
"""
If a region is specified as part of the optional parameters of the completion, including as
part of the config file, then use that region instead of us-west-2
"""
expected_region = "us-east-1"
mock_response = MagicMock()
def return_val():
return {
"generated_text": "This is a mock response from SageMaker.",
"id": "cmpl-mockid",
"object": "text_completion",
"created": 1629800000,
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
"choices": [
{
"text": "This is a mock response from SageMaker.",
"index": 0,
"logprobs": None,
"finish_reason": "length",
}
],
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
}
mock_response.json = return_val
mock_response.status_code = 200
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
return_value=mock_response,
) as mock_post:
response = litellm.completion(
model="sagemaker/mock-endpoint",
messages=[{"content": "Hello, world!", "role": "user"}],
aws_region_name=expected_region,
)
mock_post.assert_called_once()
_, kwargs = mock_post.call_args
args_to_sagemaker = kwargs["json"]
print("Arguments passed to sagemaker=", args_to_sagemaker)
print("url=", kwargs["url"])
assert (
kwargs["url"]
== f"https://runtime.sagemaker.{expected_region}.amazonaws.com/endpoints/mock-endpoint/invocations"
)
# test_sagemaker_config_region()
# test_sagemaker_config_and_environment_region()
# Bedrock
def bedrock_test_completion():
litellm.AmazonCohereConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="bedrock/cohere.command-text-v14",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="bedrock/cohere.command-text-v14",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# bedrock_test_completion()
# OpenAI Chat Completion
def openai_test_completion():
litellm.OpenAIConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# openai_test_completion()
# OpenAI Text Completion
def openai_text_completion_test():
litellm.OpenAITextCompletionConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="gpt-3.5-turbo-instruct",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="gpt-3.5-turbo-instruct",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
response_3 = litellm.completion(
model="gpt-3.5-turbo-instruct",
messages=[{"content": "Hello, how are you?", "role": "user"}],
n=2,
)
assert len(response_3.choices) > 1
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# openai_text_completion_test()
# Azure OpenAI
def azure_openai_test_completion():
litellm.AzureOpenAIConfig(max_tokens=10)
# litellm.set_verbose=True
try:
# OVERRIDE WITH DYNAMIC MAX TOKENS
response_1 = litellm.completion(
model="azure/chatgpt-v-2",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
max_tokens=100,
)
response_1_text = response_1.choices[0].message.content
print(f"response_1_text: {response_1_text}")
# USE CONFIG TOKENS
response_2 = litellm.completion(
model="azure/chatgpt-v-2",
messages=[
{
"content": "Hello, how are you? Be as verbose as possible",
"role": "user",
}
],
)
response_2_text = response_2.choices[0].message.content
print(f"response_2_text: {response_2_text}")
assert len(response_2_text) < len(response_1_text)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# azure_openai_test_completion()