forked from phoenix/litellm-mirror
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
806 lines
25 KiB
Python
806 lines
25 KiB
Python
#### What this tests ####
|
|
# This tests setting provider specific configs across providers
|
|
# There are 2 types of tests - changing config dynamically or by setting class variables
|
|
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import litellm
|
|
from litellm import RateLimitError, completion
|
|
|
|
# Huggingface - Expensive to deploy models and keep them running. Maybe we can try doing this via baseten??
|
|
# def hf_test_completion_tgi():
|
|
# litellm.HuggingfaceConfig(max_new_tokens=200)
|
|
# litellm.set_verbose=True
|
|
# try:
|
|
# # OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
# response_1 = litellm.completion(
|
|
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
|
|
# messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
|
|
# max_tokens=10
|
|
# )
|
|
# # Add any assertions here to check the response
|
|
# print(response_1)
|
|
# response_1_text = response_1.choices[0].message.content
|
|
|
|
# # USE CONFIG TOKENS
|
|
# response_2 = litellm.completion(
|
|
# model="huggingface/mistralai/Mistral-7B-Instruct-v0.1",
|
|
# messages=[{ "content": "Hello, how are you?","role": "user"}],
|
|
# api_base="https://n9ox93a8sv5ihsow.us-east-1.aws.endpoints.huggingface.cloud",
|
|
# )
|
|
# # Add any assertions here to check the response
|
|
# print(response_2)
|
|
# response_2_text = response_2.choices[0].message.content
|
|
|
|
# assert len(response_2_text) > len(response_1_text)
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
# hf_test_completion_tgi()
|
|
|
|
# Anthropic
|
|
|
|
|
|
def claude_test_completion():
|
|
litellm.AnthropicConfig(max_tokens_to_sample=200)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="claude-instant-1.2",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
max_tokens=10,
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response_1)
|
|
response_1_text = response_1.choices[0].message.content
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="claude-instant-1.2",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response_2)
|
|
response_2_text = response_2.choices[0].message.content
|
|
|
|
assert len(response_2_text) > len(response_1_text)
|
|
|
|
try:
|
|
response_3 = litellm.completion(
|
|
model="claude-instant-1.2",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# claude_test_completion()
|
|
|
|
# Replicate
|
|
|
|
|
|
def replicate_test_completion():
|
|
litellm.ReplicateConfig(max_new_tokens=200)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
max_tokens=10,
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response_1)
|
|
response_1_text = response_1.choices[0].message.content
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response_2)
|
|
response_2_text = response_2.choices[0].message.content
|
|
|
|
assert len(response_2_text) > len(response_1_text)
|
|
try:
|
|
response_3 = litellm.completion(
|
|
model="meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
except Exception:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# replicate_test_completion()
|
|
|
|
# Cohere
|
|
|
|
|
|
def cohere_test_completion():
|
|
# litellm.CohereConfig(max_tokens=200)
|
|
litellm.set_verbose = True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="command-nightly",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
max_tokens=10,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="command-nightly",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
|
|
assert len(response_2_text) > len(response_1_text)
|
|
|
|
response_3 = litellm.completion(
|
|
model="command-nightly",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
assert len(response_3.choices) > 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# cohere_test_completion()
|
|
|
|
# AI21
|
|
|
|
|
|
def ai21_test_completion():
|
|
litellm.AI21Config(maxTokens=10)
|
|
litellm.set_verbose = True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="j2-mid",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="j2-mid",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
|
|
response_3 = litellm.completion(
|
|
model="j2-light",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
assert len(response_3.choices) > 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# ai21_test_completion()
|
|
|
|
# TogetherAI
|
|
|
|
|
|
def togetherai_test_completion():
|
|
litellm.TogetherAIConfig(max_tokens=10)
|
|
litellm.set_verbose = True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="together_ai/togethercomputer/llama-2-70b-chat",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="together_ai/togethercomputer/llama-2-70b-chat",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
|
|
try:
|
|
response_3 = litellm.completion(
|
|
model="together_ai/togethercomputer/llama-2-70b-chat",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
pytest.fail(f"Error not raised when n=2 passed to provider")
|
|
except Exception:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# togetherai_test_completion()
|
|
|
|
# Palm
|
|
|
|
|
|
# palm_test_completion()
|
|
|
|
# NLP Cloud
|
|
|
|
|
|
def nlp_cloud_test_completion():
|
|
litellm.NLPCloudConfig(max_length=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="dolphin",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="dolphin",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
|
|
try:
|
|
response_3 = litellm.completion(
|
|
model="dolphin",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
pytest.fail(f"Error not raised when n=2 passed to provider")
|
|
except Exception:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# nlp_cloud_test_completion()
|
|
|
|
# AlephAlpha
|
|
|
|
|
|
def aleph_alpha_test_completion():
|
|
litellm.AlephAlphaConfig(maximum_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="luminous-base",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="luminous-base",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
|
|
response_3 = litellm.completion(
|
|
model="luminous-base",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
|
|
assert len(response_3.choices) > 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# aleph_alpha_test_completion()
|
|
|
|
# Petals - calls are too slow, will cause circle ci to fail due to delay. Test locally.
|
|
# def petals_completion():
|
|
# litellm.PetalsConfig(max_new_tokens=10)
|
|
# # litellm.set_verbose=True
|
|
# try:
|
|
# # OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
# response_1 = litellm.completion(
|
|
# model="petals/petals-team/StableBeluga2",
|
|
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
|
# api_base="https://chat.petals.dev/api/v1/generate",
|
|
# max_tokens=100
|
|
# )
|
|
# response_1_text = response_1.choices[0].message.content
|
|
# print(f"response_1_text: {response_1_text}")
|
|
|
|
# # USE CONFIG TOKENS
|
|
# response_2 = litellm.completion(
|
|
# model="petals/petals-team/StableBeluga2",
|
|
# api_base="https://chat.petals.dev/api/v1/generate",
|
|
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
|
# )
|
|
# response_2_text = response_2.choices[0].message.content
|
|
# print(f"response_2_text: {response_2_text}")
|
|
|
|
# assert len(response_2_text) < len(response_1_text)
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# petals_completion()
|
|
|
|
# VertexAI
|
|
# We don't have vertex ai configured for circle ci yet -- need to figure this out.
|
|
# def vertex_ai_test_completion():
|
|
# litellm.VertexAIConfig(max_output_tokens=10)
|
|
# # litellm.set_verbose=True
|
|
# try:
|
|
# # OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
# response_1 = litellm.completion(
|
|
# model="chat-bison",
|
|
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
|
# max_tokens=100
|
|
# )
|
|
# response_1_text = response_1.choices[0].message.content
|
|
# print(f"response_1_text: {response_1_text}")
|
|
|
|
# # USE CONFIG TOKENS
|
|
# response_2 = litellm.completion(
|
|
# model="chat-bison",
|
|
# messages=[{ "content": "Hello, how are you? Be as verbose as possible","role": "user"}],
|
|
# )
|
|
# response_2_text = response_2.choices[0].message.content
|
|
# print(f"response_2_text: {response_2_text}")
|
|
|
|
# assert len(response_2_text) < len(response_1_text)
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# vertex_ai_test_completion()
|
|
|
|
# Sagemaker
|
|
|
|
|
|
@pytest.mark.skip(reason="AWS Suspended Account")
|
|
def sagemaker_test_completion():
|
|
litellm.SagemakerConfig(max_new_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="sagemaker/berri-benchmarking-Llama-2-70b-chat-hf-4",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# sagemaker_test_completion()
|
|
|
|
|
|
def test_sagemaker_default_region():
|
|
"""
|
|
If no regions are specified in config or in environment, the default region is us-west-2
|
|
"""
|
|
mock_response = MagicMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"generated_text": "This is a mock response from SageMaker.",
|
|
"id": "cmpl-mockid",
|
|
"object": "text_completion",
|
|
"created": 1629800000,
|
|
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
|
"choices": [
|
|
{
|
|
"text": "This is a mock response from SageMaker.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "length",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = litellm.completion(
|
|
model="sagemaker/mock-endpoint",
|
|
messages=[{"content": "Hello, world!", "role": "user"}],
|
|
)
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_sagemaker = kwargs["json"]
|
|
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
|
print("url=", kwargs["url"])
|
|
|
|
assert (
|
|
kwargs["url"]
|
|
== "https://runtime.sagemaker.us-west-2.amazonaws.com/endpoints/mock-endpoint/invocations"
|
|
)
|
|
|
|
|
|
# test_sagemaker_default_region()
|
|
|
|
|
|
def test_sagemaker_environment_region():
|
|
"""
|
|
If a region is specified in the environment, use that region instead of us-west-2
|
|
"""
|
|
expected_region = "us-east-1"
|
|
os.environ["AWS_REGION_NAME"] = expected_region
|
|
mock_response = MagicMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"generated_text": "This is a mock response from SageMaker.",
|
|
"id": "cmpl-mockid",
|
|
"object": "text_completion",
|
|
"created": 1629800000,
|
|
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
|
"choices": [
|
|
{
|
|
"text": "This is a mock response from SageMaker.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "length",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = litellm.completion(
|
|
model="sagemaker/mock-endpoint",
|
|
messages=[{"content": "Hello, world!", "role": "user"}],
|
|
)
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_sagemaker = kwargs["json"]
|
|
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
|
print("url=", kwargs["url"])
|
|
|
|
assert (
|
|
kwargs["url"]
|
|
== f"https://runtime.sagemaker.{expected_region}.amazonaws.com/endpoints/mock-endpoint/invocations"
|
|
)
|
|
|
|
del os.environ["AWS_REGION_NAME"] # cleanup
|
|
|
|
|
|
# test_sagemaker_environment_region()
|
|
|
|
|
|
def test_sagemaker_config_region():
|
|
"""
|
|
If a region is specified as part of the optional parameters of the completion, including as
|
|
part of the config file, then use that region instead of us-west-2
|
|
"""
|
|
expected_region = "us-east-1"
|
|
mock_response = MagicMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"generated_text": "This is a mock response from SageMaker.",
|
|
"id": "cmpl-mockid",
|
|
"object": "text_completion",
|
|
"created": 1629800000,
|
|
"model": "sagemaker/jumpstart-dft-hf-textgeneration1-mp-20240815-185614",
|
|
"choices": [
|
|
{
|
|
"text": "This is a mock response from SageMaker.",
|
|
"index": 0,
|
|
"logprobs": None,
|
|
"finish_reason": "length",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 1, "completion_tokens": 8, "total_tokens": 9},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
|
|
response = litellm.completion(
|
|
model="sagemaker/mock-endpoint",
|
|
messages=[{"content": "Hello, world!", "role": "user"}],
|
|
aws_region_name=expected_region,
|
|
)
|
|
|
|
mock_post.assert_called_once()
|
|
_, kwargs = mock_post.call_args
|
|
args_to_sagemaker = kwargs["json"]
|
|
print("Arguments passed to sagemaker=", args_to_sagemaker)
|
|
print("url=", kwargs["url"])
|
|
|
|
assert (
|
|
kwargs["url"]
|
|
== f"https://runtime.sagemaker.{expected_region}.amazonaws.com/endpoints/mock-endpoint/invocations"
|
|
)
|
|
|
|
|
|
# test_sagemaker_config_region()
|
|
|
|
|
|
# test_sagemaker_config_and_environment_region()
|
|
|
|
|
|
# Bedrock
|
|
|
|
|
|
def bedrock_test_completion():
|
|
litellm.AmazonCohereConfig(max_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="bedrock/cohere.command-text-v14",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="bedrock/cohere.command-text-v14",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
except RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# bedrock_test_completion()
|
|
|
|
|
|
# OpenAI Chat Completion
|
|
def openai_test_completion():
|
|
litellm.OpenAIConfig(max_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# openai_test_completion()
|
|
|
|
|
|
# OpenAI Text Completion
|
|
def openai_text_completion_test():
|
|
litellm.OpenAITextCompletionConfig(max_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="gpt-3.5-turbo-instruct",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="gpt-3.5-turbo-instruct",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
|
|
response_3 = litellm.completion(
|
|
model="gpt-3.5-turbo-instruct",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
n=2,
|
|
)
|
|
assert len(response_3.choices) > 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# openai_text_completion_test()
|
|
|
|
|
|
# Azure OpenAI
|
|
def azure_openai_test_completion():
|
|
litellm.AzureOpenAIConfig(max_tokens=10)
|
|
# litellm.set_verbose=True
|
|
try:
|
|
# OVERRIDE WITH DYNAMIC MAX TOKENS
|
|
response_1 = litellm.completion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
max_tokens=100,
|
|
)
|
|
response_1_text = response_1.choices[0].message.content
|
|
print(f"response_1_text: {response_1_text}")
|
|
|
|
# USE CONFIG TOKENS
|
|
response_2 = litellm.completion(
|
|
model="azure/chatgpt-v-2",
|
|
messages=[
|
|
{
|
|
"content": "Hello, how are you? Be as verbose as possible",
|
|
"role": "user",
|
|
}
|
|
],
|
|
)
|
|
response_2_text = response_2.choices[0].message.content
|
|
print(f"response_2_text: {response_2_text}")
|
|
|
|
assert len(response_2_text) < len(response_1_text)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# azure_openai_test_completion()
|