forked from phoenix/litellm-mirror
318 lines
10 KiB
Python
318 lines
10 KiB
Python
# test that the proxy actually does exception mapping to the OpenAI format
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
from unittest import mock
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import asyncio
|
|
import io
|
|
import os
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import openai
|
|
import pytest
|
|
from fastapi import Response
|
|
from fastapi.testclient import TestClient
|
|
|
|
import litellm
|
|
from litellm.proxy.proxy_server import ( # Replace with the actual module where your FastAPI router is defined
|
|
initialize,
|
|
router,
|
|
save_worker_config,
|
|
)
|
|
|
|
invalid_authentication_error_response = Response(
|
|
status_code=401,
|
|
content=json.dumps({"error": "Invalid Authentication"}),
|
|
)
|
|
context_length_exceeded_error_response_dict = {
|
|
"error": {
|
|
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
|
|
"type": None,
|
|
"param": None,
|
|
"code": 400,
|
|
},
|
|
}
|
|
context_length_exceeded_error_response = Response(
|
|
status_code=400,
|
|
content=json.dumps(context_length_exceeded_error_response_dict),
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def client():
|
|
filepath = os.path.dirname(os.path.abspath(__file__))
|
|
config_fp = f"{filepath}/test_configs/test_bad_config.yaml"
|
|
asyncio.run(initialize(config=config_fp))
|
|
from litellm.proxy.proxy_server import app
|
|
|
|
return TestClient(app)
|
|
|
|
|
|
# raise openai.AuthenticationError
|
|
def test_chat_completion_exception(client):
|
|
try:
|
|
# Your test data
|
|
test_data = {
|
|
"model": "gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "hi"},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
|
|
response = client.post("/chat/completions", json=test_data)
|
|
|
|
json_response = response.json()
|
|
print("keys in json response", json_response.keys())
|
|
assert json_response.keys() == {"error"}
|
|
print("ERROR=", json_response["error"])
|
|
assert isinstance(json_response["error"]["message"], str)
|
|
assert (
|
|
"litellm.AuthenticationError: AuthenticationError"
|
|
in json_response["error"]["message"]
|
|
)
|
|
|
|
code_in_error = json_response["error"]["code"]
|
|
# OpenAI SDK required code to be STR, https://github.com/BerriAI/litellm/issues/4970
|
|
# If we look on official python OpenAI lib, the code should be a string:
|
|
# https://github.com/openai/openai-python/blob/195c05a64d39c87b2dfdf1eca2d339597f1fce03/src/openai/types/shared/error_object.py#L11
|
|
# Related LiteLLM issue: https://github.com/BerriAI/litellm/discussions/4834
|
|
assert type(code_in_error) == str
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
assert isinstance(openai_exception, openai.AuthenticationError)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# raise openai.AuthenticationError
|
|
@mock.patch(
|
|
"litellm.proxy.proxy_server.llm_router.acompletion",
|
|
return_value=invalid_authentication_error_response,
|
|
)
|
|
def test_chat_completion_exception_azure(mock_acompletion, client):
|
|
try:
|
|
# Your test data
|
|
test_data = {
|
|
"model": "azure-gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "hi"},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
|
|
response = client.post("/chat/completions", json=test_data)
|
|
|
|
mock_acompletion.assert_called_once_with(
|
|
**test_data,
|
|
litellm_call_id=mock.ANY,
|
|
litellm_logging_obj=mock.ANY,
|
|
request_timeout=mock.ANY,
|
|
metadata=mock.ANY,
|
|
proxy_server_request=mock.ANY,
|
|
)
|
|
|
|
json_response = response.json()
|
|
print("keys in json response", json_response.keys())
|
|
assert json_response.keys() == {"error"}
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
print(openai_exception)
|
|
assert isinstance(openai_exception, openai.AuthenticationError)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# raise openai.AuthenticationError
|
|
@mock.patch(
|
|
"litellm.proxy.proxy_server.llm_router.aembedding",
|
|
return_value=invalid_authentication_error_response,
|
|
)
|
|
def test_embedding_auth_exception_azure(mock_aembedding, client):
|
|
try:
|
|
# Your test data
|
|
test_data = {"model": "azure-embedding", "input": ["hi"]}
|
|
|
|
response = client.post("/embeddings", json=test_data)
|
|
mock_aembedding.assert_called_once_with(
|
|
**test_data,
|
|
metadata=mock.ANY,
|
|
proxy_server_request=mock.ANY,
|
|
)
|
|
print("Response from proxy=", response)
|
|
|
|
json_response = response.json()
|
|
print("keys in json response", json_response.keys())
|
|
assert json_response.keys() == {"error"}
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
print("Exception raised=", openai_exception)
|
|
assert isinstance(openai_exception, openai.AuthenticationError)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# raise openai.BadRequestError
|
|
# chat/completions openai
|
|
def test_exception_openai_bad_model(client):
|
|
try:
|
|
# Your test data
|
|
test_data = {
|
|
"model": "azure/GPT-12",
|
|
"messages": [
|
|
{"role": "user", "content": "hi"},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
|
|
response = client.post("/chat/completions", json=test_data)
|
|
|
|
json_response = response.json()
|
|
print("keys in json response", json_response.keys())
|
|
assert json_response.keys() == {"error"}
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
print("Type of exception=", type(openai_exception))
|
|
assert isinstance(openai_exception, openai.BadRequestError)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# chat/completions any model
|
|
def test_chat_completion_exception_any_model(client):
|
|
try:
|
|
# Your test data
|
|
test_data = {
|
|
"model": "Lite-GPT-12",
|
|
"messages": [
|
|
{"role": "user", "content": "hi"},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
|
|
response = client.post("/chat/completions", json=test_data)
|
|
|
|
json_response = response.json()
|
|
assert json_response.keys() == {"error"}
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
assert isinstance(openai_exception, openai.BadRequestError)
|
|
_error_message = openai_exception.message
|
|
assert (
|
|
"/chat/completions: Invalid model name passed in model=Lite-GPT-12"
|
|
in str(_error_message)
|
|
)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# embeddings any model
|
|
def test_embedding_exception_any_model(client):
|
|
try:
|
|
# Your test data
|
|
test_data = {"model": "Lite-GPT-12", "input": ["hi"]}
|
|
|
|
response = client.post("/embeddings", json=test_data)
|
|
print("Response from proxy=", response)
|
|
print(response.json())
|
|
|
|
json_response = response.json()
|
|
print("keys in json response", json_response.keys())
|
|
assert json_response.keys() == {"error"}
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
print("Exception raised=", openai_exception)
|
|
assert isinstance(openai_exception, openai.BadRequestError)
|
|
_error_message = openai_exception.message
|
|
assert "/embeddings: Invalid model name passed in model=Lite-GPT-12" in str(
|
|
_error_message
|
|
)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|
|
|
|
|
|
# raise openai.BadRequestError
|
|
@mock.patch(
|
|
"litellm.proxy.proxy_server.llm_router.acompletion",
|
|
return_value=context_length_exceeded_error_response,
|
|
)
|
|
def test_chat_completion_exception_azure_context_window(mock_acompletion, client):
|
|
try:
|
|
# Your test data
|
|
test_data = {
|
|
"model": "working-azure-gpt-3.5-turbo",
|
|
"messages": [
|
|
{"role": "user", "content": "hi" * 10000},
|
|
],
|
|
"max_tokens": 10,
|
|
}
|
|
response = None
|
|
|
|
response = client.post("/chat/completions", json=test_data)
|
|
print("got response from server", response)
|
|
|
|
mock_acompletion.assert_called_once_with(
|
|
**test_data,
|
|
litellm_call_id=mock.ANY,
|
|
litellm_logging_obj=mock.ANY,
|
|
request_timeout=mock.ANY,
|
|
metadata=mock.ANY,
|
|
proxy_server_request=mock.ANY,
|
|
)
|
|
|
|
json_response = response.json()
|
|
|
|
print("keys in json response", json_response.keys())
|
|
|
|
assert json_response.keys() == {"error"}
|
|
|
|
assert json_response == context_length_exceeded_error_response_dict
|
|
|
|
# make an openai client to call _make_status_error_from_response
|
|
openai_client = openai.OpenAI(api_key="anything")
|
|
openai_exception = openai_client._make_status_error_from_response(
|
|
response=response
|
|
)
|
|
print("exception from proxy", openai_exception)
|
|
assert isinstance(openai_exception, openai.BadRequestError)
|
|
print("passed exception is of type BadRequestError")
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
|