litellm/tests/local_testing/test_proxy_exception_mapping.py

318 lines
10 KiB
Python

# test that the proxy actually does exception mapping to the OpenAI format
import json
import os
import sys
from unittest import mock
from dotenv import load_dotenv
load_dotenv()
import asyncio
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import openai
import pytest
from fastapi import Response
from fastapi.testclient import TestClient
import litellm
from litellm.proxy.proxy_server import ( # Replace with the actual module where your FastAPI router is defined
initialize,
router,
save_worker_config,
)
invalid_authentication_error_response = Response(
status_code=401,
content=json.dumps({"error": "Invalid Authentication"}),
)
context_length_exceeded_error_response_dict = {
"error": {
"message": "AzureException - Error code: 400 - {'error': {'message': \"This model's maximum context length is 4096 tokens. However, your messages resulted in 10007 tokens. Please reduce the length of the messages.\", 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}}",
"type": None,
"param": None,
"code": 400,
},
}
context_length_exceeded_error_response = Response(
status_code=400,
content=json.dumps(context_length_exceeded_error_response_dict),
)
@pytest.fixture
def client():
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_bad_config.yaml"
asyncio.run(initialize(config=config_fp))
from litellm.proxy.proxy_server import app
return TestClient(app)
# raise openai.AuthenticationError
def test_chat_completion_exception(client):
try:
# Your test data
test_data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
print("ERROR=", json_response["error"])
assert isinstance(json_response["error"]["message"], str)
assert (
"litellm.AuthenticationError: AuthenticationError"
in json_response["error"]["message"]
)
code_in_error = json_response["error"]["code"]
# OpenAI SDK required code to be STR, https://github.com/BerriAI/litellm/issues/4970
# If we look on official python OpenAI lib, the code should be a string:
# https://github.com/openai/openai-python/blob/195c05a64d39c87b2dfdf1eca2d339597f1fce03/src/openai/types/shared/error_object.py#L11
# Related LiteLLM issue: https://github.com/BerriAI/litellm/discussions/4834
assert type(code_in_error) == str
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.AuthenticationError
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=invalid_authentication_error_response,
)
def test_chat_completion_exception_azure(mock_acompletion, client):
try:
# Your test data
test_data = {
"model": "azure-gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print(openai_exception)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.AuthenticationError
@mock.patch(
"litellm.proxy.proxy_server.llm_router.aembedding",
return_value=invalid_authentication_error_response,
)
def test_embedding_auth_exception_azure(mock_aembedding, client):
try:
# Your test data
test_data = {"model": "azure-embedding", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
mock_aembedding.assert_called_once_with(
**test_data,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
print("Response from proxy=", response)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.AuthenticationError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.BadRequestError
# chat/completions openai
def test_exception_openai_bad_model(client):
try:
# Your test data
test_data = {
"model": "azure/GPT-12",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Type of exception=", type(openai_exception))
assert isinstance(openai_exception, openai.BadRequestError)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# chat/completions any model
def test_chat_completion_exception_any_model(client):
try:
# Your test data
test_data = {
"model": "Lite-GPT-12",
"messages": [
{"role": "user", "content": "hi"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data)
json_response = response.json()
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
assert isinstance(openai_exception, openai.BadRequestError)
_error_message = openai_exception.message
assert (
"/chat/completions: Invalid model name passed in model=Lite-GPT-12"
in str(_error_message)
)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# embeddings any model
def test_embedding_exception_any_model(client):
try:
# Your test data
test_data = {"model": "Lite-GPT-12", "input": ["hi"]}
response = client.post("/embeddings", json=test_data)
print("Response from proxy=", response)
print(response.json())
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("Exception raised=", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
_error_message = openai_exception.message
assert "/embeddings: Invalid model name passed in model=Lite-GPT-12" in str(
_error_message
)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
# raise openai.BadRequestError
@mock.patch(
"litellm.proxy.proxy_server.llm_router.acompletion",
return_value=context_length_exceeded_error_response,
)
def test_chat_completion_exception_azure_context_window(mock_acompletion, client):
try:
# Your test data
test_data = {
"model": "working-azure-gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "hi" * 10000},
],
"max_tokens": 10,
}
response = None
response = client.post("/chat/completions", json=test_data)
print("got response from server", response)
mock_acompletion.assert_called_once_with(
**test_data,
litellm_call_id=mock.ANY,
litellm_logging_obj=mock.ANY,
request_timeout=mock.ANY,
metadata=mock.ANY,
proxy_server_request=mock.ANY,
)
json_response = response.json()
print("keys in json response", json_response.keys())
assert json_response.keys() == {"error"}
assert json_response == context_length_exceeded_error_response_dict
# make an openai client to call _make_status_error_from_response
openai_client = openai.OpenAI(api_key="anything")
openai_exception = openai_client._make_status_error_from_response(
response=response
)
print("exception from proxy", openai_exception)
assert isinstance(openai_exception, openai.BadRequestError)
print("passed exception is of type BadRequestError")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")