forked from phoenix/litellm-mirror
* use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered
4013 lines
136 KiB
Python
4013 lines
136 KiB
Python
#### What this tests ####
|
|
# This tests streaming for the completion endpoint
|
|
|
|
import asyncio
|
|
import json
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import uuid
|
|
from typing import Tuple
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import pytest
|
|
from pydantic import BaseModel
|
|
|
|
import litellm.litellm_core_utils
|
|
import litellm.litellm_core_utils.litellm_logging
|
|
from litellm.utils import ModelResponseListIterator
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import random
|
|
|
|
import litellm
|
|
from litellm import (
|
|
AuthenticationError,
|
|
BadRequestError,
|
|
ModelResponse,
|
|
RateLimitError,
|
|
acompletion,
|
|
completion,
|
|
)
|
|
|
|
litellm.logging = False
|
|
litellm.set_verbose = True
|
|
litellm.num_retries = 3
|
|
litellm.cache = None
|
|
|
|
score = 0
|
|
|
|
|
|
def logger_fn(model_call_object: dict):
|
|
print(f"model call details: {model_call_object}")
|
|
|
|
|
|
user_message = "Hello, how are you?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
|
|
|
|
first_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"role": "assistant", "content": ""},
|
|
"finish_reason": None, # it's null
|
|
}
|
|
],
|
|
}
|
|
|
|
|
|
def validate_first_format(chunk):
|
|
# write a test to make sure chunk follows the same format as first_openai_chunk_example
|
|
assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary."
|
|
assert isinstance(chunk["id"], str), "'id' should be a string."
|
|
assert isinstance(chunk["object"], str), "'object' should be a string."
|
|
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
|
assert isinstance(chunk["model"], str), "'model' should be a string."
|
|
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
|
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
|
|
|
for choice in chunk["choices"]:
|
|
assert isinstance(choice["index"], int), "'index' should be an integer."
|
|
assert isinstance(choice["delta"]["role"], str), "'role' should be a string."
|
|
assert "messages" not in choice
|
|
# openai v1.0.0 returns content as None
|
|
assert (choice["finish_reason"] is None) or isinstance(
|
|
choice["finish_reason"], str
|
|
), "'finish_reason' should be None or a string."
|
|
|
|
|
|
second_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [
|
|
{"index": 0, "delta": {"content": "Hello"}, "finish_reason": None} # it's null
|
|
],
|
|
}
|
|
|
|
|
|
def validate_second_format(chunk):
|
|
assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary."
|
|
assert isinstance(chunk["id"], str), "'id' should be a string."
|
|
assert isinstance(chunk["object"], str), "'object' should be a string."
|
|
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
|
assert isinstance(chunk["model"], str), "'model' should be a string."
|
|
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
|
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
|
|
|
for choice in chunk["choices"]:
|
|
assert isinstance(choice["index"], int), "'index' should be an integer."
|
|
assert hasattr(choice["delta"], "role"), "'role' should be a string."
|
|
# openai v1.0.0 returns content as None
|
|
assert (choice["finish_reason"] is None) or isinstance(
|
|
choice["finish_reason"], str
|
|
), "'finish_reason' should be None or a string."
|
|
|
|
|
|
last_openai_chunk_example = {
|
|
"id": "chatcmpl-7zSKLBVXnX9dwgRuDYVqVVDsgh2yp",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694881253,
|
|
"model": "gpt-4-0613",
|
|
"choices": [{"index": 0, "delta": {}, "finish_reason": "stop"}],
|
|
}
|
|
|
|
"""
|
|
Final chunk (sdk):
|
|
chunk: ChatCompletionChunk(id='chatcmpl-96mM3oNBlxh2FDWVLKsgaFBBcULmI',
|
|
choices=[Choice(delta=ChoiceDelta(content=None, function_call=None, role=None,
|
|
tool_calls=None), finish_reason='stop', index=0, logprobs=None)],
|
|
created=1711402871, model='gpt-3.5-turbo-0125', object='chat.completion.chunk', system_fingerprint='fp_3bc1b5746c')
|
|
"""
|
|
|
|
|
|
def validate_last_format(chunk):
|
|
"""
|
|
Ensure last chunk has no remaining content or tools
|
|
"""
|
|
assert isinstance(chunk, ModelResponse), "Chunk should be a dictionary."
|
|
assert isinstance(chunk["id"], str), "'id' should be a string."
|
|
assert isinstance(chunk["object"], str), "'object' should be a string."
|
|
assert isinstance(chunk["created"], int), "'created' should be an integer."
|
|
assert isinstance(chunk["model"], str), "'model' should be a string."
|
|
assert isinstance(chunk["choices"], list), "'choices' should be a list."
|
|
assert not hasattr(chunk, "usage"), "Chunk cannot contain usage"
|
|
|
|
for choice in chunk["choices"]:
|
|
assert isinstance(choice["index"], int), "'index' should be an integer."
|
|
assert choice["delta"]["content"] is None
|
|
assert choice["delta"]["function_call"] is None
|
|
assert choice["delta"]["role"] is None
|
|
assert choice["delta"]["tool_calls"] is None
|
|
assert isinstance(
|
|
choice["finish_reason"], str
|
|
), "'finish_reason' should be a string."
|
|
|
|
|
|
def streaming_format_tests(idx, chunk) -> Tuple[str, bool]:
|
|
extracted_chunk = ""
|
|
finished = False
|
|
print(f"chunk: {chunk}")
|
|
if idx == 0: # ensure role assistant is set
|
|
validate_first_format(chunk=chunk)
|
|
role = chunk["choices"][0]["delta"]["role"]
|
|
assert role == "assistant"
|
|
elif idx == 1: # second chunk
|
|
validate_second_format(chunk=chunk)
|
|
if idx != 0: # ensure no role
|
|
if "role" in chunk["choices"][0]["delta"]:
|
|
pass # openai v1.0.0+ passes role = None
|
|
if chunk["choices"][0][
|
|
"finish_reason"
|
|
]: # ensure finish reason is only in last chunk
|
|
validate_last_format(chunk=chunk)
|
|
finished = True
|
|
if (
|
|
"content" in chunk["choices"][0]["delta"]
|
|
and chunk["choices"][0]["delta"]["content"] is not None
|
|
):
|
|
extracted_chunk = chunk["choices"][0]["delta"]["content"]
|
|
print(f"extracted chunk: {extracted_chunk}")
|
|
return extracted_chunk, finished
|
|
|
|
|
|
tools_schema = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
# def test_completion_cohere_stream():
|
|
# # this is a flaky test due to the cohere API endpoint being unstable
|
|
# try:
|
|
# messages = [
|
|
# {"role": "system", "content": "You are a helpful assistant."},
|
|
# {
|
|
# "role": "user",
|
|
# "content": "how does a court case get to the Supreme Court?",
|
|
# },
|
|
# ]
|
|
# response = completion(
|
|
# model="command-nightly", messages=messages, stream=True, max_tokens=50,
|
|
# )
|
|
# complete_response = ""
|
|
# # Add any assertions here to check the response
|
|
# has_finish_reason = False
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finish_reason = finished
|
|
# if finished:
|
|
# break
|
|
# complete_response += chunk
|
|
# if has_finish_reason is False:
|
|
# raise Exception("Finish reason not in final chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# print(f"completion_response: {complete_response}")
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_completion_cohere_stream()
|
|
|
|
|
|
def test_completion_azure_stream_special_char():
|
|
litellm.set_verbose = True
|
|
messages = [{"role": "user", "content": "hi. respond with the <xml> tag only"}]
|
|
response = completion(model="azure/chatgpt-v-2", messages=messages, stream=True)
|
|
response_str = ""
|
|
for part in response:
|
|
response_str += part.choices[0].delta.content or ""
|
|
print(f"response_str: {response_str}")
|
|
assert len(response_str) > 0
|
|
|
|
|
|
def test_completion_azure_stream_content_filter_no_delta():
|
|
"""
|
|
Tests streaming from Azure when the chunks have no delta because they represent the filtered content
|
|
"""
|
|
try:
|
|
chunks = [
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{
|
|
"delta": {"content": "", "role": "assistant"},
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{"delta": {"content": "This"}, "finish_reason": None, "index": 0}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{"delta": {"content": " is"}, "finish_reason": None, "index": 0}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{"delta": {"content": " a"}, "finish_reason": None, "index": 0}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{"delta": {"content": " dummy"}, "finish_reason": None, "index": 0}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{
|
|
"delta": {"content": " response"},
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "",
|
|
"choices": [
|
|
{
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
"content_filter_offsets": {
|
|
"check_offset": 35159,
|
|
"start_offset": 35159,
|
|
"end_offset": 36150,
|
|
},
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
}
|
|
],
|
|
"created": 0,
|
|
"model": "",
|
|
"object": "",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [
|
|
{"delta": {"content": "."}, "finish_reason": None, "index": 0}
|
|
],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "chatcmpl-9SQxdH5hODqkWyJopWlaVOOUnFwlj",
|
|
"choices": [{"delta": {}, "finish_reason": "stop", "index": 0}],
|
|
"created": 1716563849,
|
|
"model": "gpt-4o-2024-05-13",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": "fp_5f4bad809a",
|
|
},
|
|
{
|
|
"id": "",
|
|
"choices": [
|
|
{
|
|
"finish_reason": None,
|
|
"index": 0,
|
|
"content_filter_offsets": {
|
|
"check_offset": 36150,
|
|
"start_offset": 36060,
|
|
"end_offset": 37029,
|
|
},
|
|
"content_filter_results": {
|
|
"hate": {"filtered": False, "severity": "safe"},
|
|
"self_harm": {"filtered": False, "severity": "safe"},
|
|
"sexual": {"filtered": False, "severity": "safe"},
|
|
"violence": {"filtered": False, "severity": "safe"},
|
|
},
|
|
}
|
|
],
|
|
"created": 0,
|
|
"model": "",
|
|
"object": "",
|
|
},
|
|
]
|
|
|
|
chunk_list = []
|
|
for chunk in chunks:
|
|
new_chunk = litellm.ModelResponse(stream=True, id=chunk["id"])
|
|
if "choices" in chunk and isinstance(chunk["choices"], list):
|
|
new_choices = []
|
|
for choice in chunk["choices"]:
|
|
if isinstance(choice, litellm.utils.StreamingChoices):
|
|
_new_choice = choice
|
|
elif isinstance(choice, dict):
|
|
_new_choice = litellm.utils.StreamingChoices(**choice)
|
|
new_choices.append(_new_choice)
|
|
new_chunk.choices = new_choices
|
|
chunk_list.append(new_chunk)
|
|
|
|
completion_stream = ModelResponseListIterator(model_responses=chunk_list)
|
|
|
|
litellm.set_verbose = True
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-4-0613",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.Logging(
|
|
model="gpt-4-0613",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
for idx, chunk in enumerate(response):
|
|
complete_response = ""
|
|
for idx, chunk in enumerate(response):
|
|
# print
|
|
delta = chunk.choices[0].delta
|
|
content = delta.content if delta else None
|
|
complete_response += content or ""
|
|
if chunk.choices[0].finish_reason is not None:
|
|
break
|
|
assert len(complete_response) > 0
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
def test_completion_cohere_stream_bad_key():
|
|
try:
|
|
litellm.cache = None
|
|
api_key = "bad-key"
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model="command-nightly",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=50,
|
|
api_key=api_key,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("Finish reason not in final chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except AuthenticationError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_cohere_stream_bad_key()
|
|
|
|
|
|
@pytest.mark.flaky(retries=5, delay=1)
|
|
def test_completion_azure_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model="azure/chatgpt-v-2", messages=messages, stream=True, max_tokens=50
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, init_chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
|
complete_response += chunk
|
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
|
assert custom_llm_provider == "azure"
|
|
if finished:
|
|
assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices)
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_azure_stream()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_completion_predibase_streaming(sync_mode):
|
|
try:
|
|
litellm.set_verbose = True
|
|
if sync_mode:
|
|
response = completion(
|
|
model="predibase/llama-3-8b-instruct",
|
|
timeout=5,
|
|
tenant_id="c4768f95",
|
|
max_tokens=10,
|
|
api_base="https://serving.app.predibase.com",
|
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
|
stream=True,
|
|
)
|
|
|
|
complete_response = ""
|
|
for idx, init_chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
|
complete_response += chunk
|
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
|
assert custom_llm_provider == "predibase"
|
|
if finished:
|
|
assert isinstance(
|
|
init_chunk.choices[0], litellm.utils.StreamingChoices
|
|
)
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="predibase/llama-3-8b-instruct",
|
|
tenant_id="c4768f95",
|
|
timeout=5,
|
|
max_tokens=10,
|
|
api_base="https://serving.app.predibase.com",
|
|
api_key=os.getenv("PREDIBASE_API_KEY"),
|
|
messages=[{"role": "user", "content": "What is the meaning of life?"}],
|
|
stream=True,
|
|
)
|
|
|
|
# await response
|
|
|
|
complete_response = ""
|
|
idx = 0
|
|
async for init_chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
|
complete_response += chunk
|
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
|
assert custom_llm_provider == "predibase"
|
|
idx += 1
|
|
if finished:
|
|
assert isinstance(
|
|
init_chunk.choices[0], litellm.utils.StreamingChoices
|
|
)
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
|
|
print(f"complete_response: {complete_response}")
|
|
except litellm.Timeout:
|
|
pass
|
|
except litellm.InternalServerError:
|
|
pass
|
|
except litellm.ServiceUnavailableError:
|
|
pass
|
|
except litellm.APIConnectionError:
|
|
pass
|
|
except Exception as e:
|
|
print("ERROR class", e.__class__)
|
|
print("ERROR message", e)
|
|
print("ERROR traceback", traceback.format_exc())
|
|
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_completion_ai21_stream():
|
|
litellm.set_verbose = True
|
|
response = await litellm.acompletion(
|
|
model="ai21_chat/jamba-1.5-large",
|
|
user="ishaan",
|
|
stream=True,
|
|
seed=123,
|
|
messages=[{"role": "user", "content": "hi my name is ishaan"}],
|
|
)
|
|
complete_response = ""
|
|
idx = 0
|
|
async for init_chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
|
complete_response += chunk
|
|
custom_llm_provider = init_chunk._hidden_params["custom_llm_provider"]
|
|
print(f"custom_llm_provider: {custom_llm_provider}")
|
|
assert custom_llm_provider == "ai21_chat"
|
|
idx += 1
|
|
if finished:
|
|
assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices)
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
|
|
print(f"complete_response: {complete_response}")
|
|
|
|
pass
|
|
|
|
|
|
def test_completion_azure_function_calling_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
user_message = "What is the current weather in Boston?"
|
|
messages = [{"content": user_message, "role": "user"}]
|
|
response = completion(
|
|
model="azure/chatgpt-functioncalling",
|
|
messages=messages,
|
|
stream=True,
|
|
tools=tools_schema,
|
|
)
|
|
# Add any assertions here to check the response
|
|
for chunk in response:
|
|
print(chunk)
|
|
if chunk["choices"][0]["finish_reason"] == "stop":
|
|
break
|
|
print(chunk["choices"][0]["finish_reason"])
|
|
print(chunk["choices"][0]["delta"]["content"])
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_azure_function_calling_stream()
|
|
|
|
|
|
@pytest.mark.skip("Flaky ollama test - needs to be fixed")
|
|
def test_completion_ollama_hosted_stream():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = completion(
|
|
model="ollama/phi",
|
|
messages=messages,
|
|
max_tokens=10,
|
|
num_retries=3,
|
|
timeout=20,
|
|
api_base="https://test-ollama-endpoint.onrender.com",
|
|
stream=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, init_chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, init_chunk)
|
|
complete_response += chunk
|
|
if finished:
|
|
assert isinstance(init_chunk.choices[0], litellm.utils.StreamingChoices)
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete_response: {complete_response}")
|
|
except Exception as e:
|
|
if "try pulling it first" in str(e):
|
|
return
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_ollama_hosted_stream()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
# "claude-instant-1.2",
|
|
# "claude-2",
|
|
# "mistral/mistral-medium",
|
|
"openrouter/openai/gpt-4o-mini",
|
|
],
|
|
)
|
|
def test_completion_model_stream(model):
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model=model, messages=messages, stream=True, max_tokens=50
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_acompletion_claude_2_stream():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = await litellm.acompletion(
|
|
model="claude-2",
|
|
messages=[{"role": "user", "content": "hello from litellm"}],
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
idx = 0
|
|
async for chunk in response:
|
|
print(chunk)
|
|
# print(chunk.choices[0].delta)
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except litellm.RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True, False],
|
|
) # ,
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_completion_gemini_stream(sync_mode):
|
|
try:
|
|
litellm.set_verbose = True
|
|
print("Streaming gemini response")
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
messages = [{"role": "user", "content": "What is the weather like in Boston?"}]
|
|
print("testing gemini streaming")
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
non_empty_chunks = 0
|
|
chunks = []
|
|
if sync_mode:
|
|
response = completion(
|
|
model="gemini/gemini-1.5-flash",
|
|
messages=messages,
|
|
stream=True,
|
|
functions=function1,
|
|
)
|
|
|
|
for idx, chunk in enumerate(response):
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
# print(chunk.choices[0].delta)
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
non_empty_chunks += 1
|
|
complete_response += chunk
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model="gemini/gemini-1.5-flash",
|
|
messages=messages,
|
|
stream=True,
|
|
functions=function1,
|
|
)
|
|
|
|
idx = 0
|
|
async for chunk in response:
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
# print(chunk.choices[0].delta)
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
non_empty_chunks += 1
|
|
complete_response += chunk
|
|
idx += 1
|
|
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
|
|
complete_response = litellm.stream_chunk_builder(
|
|
chunks=chunks, messages=messages
|
|
)
|
|
|
|
assert complete_response.choices[0].message.function_call is not None
|
|
|
|
# assert non_empty_chunks > 1
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
# if "429 Resource has been exhausted":
|
|
# return
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# asyncio.run(test_acompletion_gemini_stream())
|
|
def gemini_mock_post_streaming(url, **kwargs):
|
|
# This generator simulates the streaming response with partial JSON content
|
|
def stream_response():
|
|
chunks = [
|
|
"{",
|
|
'"candidates": [{"content": {"parts": [{"text": "Twelve"}],"role": "model"},"finishReason": "STOP","index": 0}],"usageMetadata": {"promptTokenCount": 8,"candidatesTokenCount": 1,"totalTokenCount": 9',
|
|
"}}\n\n", # This is the continuation of the previous chunk
|
|
'data: {"candidates": [{"content": {"parts": [{"text": "-year-old Finn was never one for adventure. He preferred the comfort of',
|
|
' his room, his nose buried in a book, to the chaotic world outside."}],"role": "model"},"finishReason": "STOP","index": 0,"safetyRatings": [{"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HATE_SPEECH","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_HARASSMENT","probability": "NEGLIGIBLE"},{"category": "HARM_CATEGORY_DANGEROUS_CONTENT","probability": "NEGLIGIBLE"}]}],"usageMetadata": {"promptTokenCount": 8,"candidatesTokenCount": 17,"totalTokenCount": 25}}\n\n',
|
|
# Add more chunks as needed
|
|
]
|
|
for chunk in chunks:
|
|
yield chunk
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "text/event-stream"}
|
|
mock_response.iter_lines = MagicMock(return_value=stream_response())
|
|
|
|
return mock_response
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sync_mode",
|
|
[True],
|
|
) # ,
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_completion_gemini_stream_accumulated_json(sync_mode):
|
|
try:
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
print("Streaming gemini response")
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
messages = [{"role": "user", "content": "What is the weather like in Boston?"}]
|
|
print("testing gemini streaming")
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
non_empty_chunks = 0
|
|
chunks = []
|
|
if sync_mode:
|
|
client = HTTPHandler(concurrent_limit=1)
|
|
with patch.object(
|
|
client, "post", side_effect=gemini_mock_post_streaming
|
|
) as mock_client:
|
|
response = completion(
|
|
model="gemini/gemini-1.5-flash",
|
|
messages=messages,
|
|
stream=True,
|
|
functions=function1,
|
|
client=client,
|
|
)
|
|
|
|
for idx, chunk in enumerate(response):
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
# print(chunk.choices[0].delta)
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
print(f"finished: {finished}")
|
|
if finished:
|
|
break
|
|
non_empty_chunks += 1
|
|
complete_response += chunk
|
|
|
|
mock_client.assert_called_once()
|
|
else:
|
|
client = AsyncHTTPHandler(concurrent_limit=1)
|
|
with patch.object(
|
|
client, "post", side_effect=gemini_mock_post_streaming
|
|
) as mock_client:
|
|
response = await litellm.acompletion(
|
|
model="gemini/gemini-1.5-flash",
|
|
messages=messages,
|
|
stream=True,
|
|
functions=function1,
|
|
)
|
|
|
|
idx = 0
|
|
async for chunk in response:
|
|
print(chunk)
|
|
chunks.append(chunk)
|
|
# print(chunk.choices[0].delta)
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
non_empty_chunks += 1
|
|
complete_response += chunk
|
|
idx += 1
|
|
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
|
|
assert (
|
|
complete_response
|
|
== "Twelve-year-old Finn was never one for adventure. He preferred the comfort of his room, his nose buried in a book, to the chaotic world outside."
|
|
)
|
|
# assert non_empty_chunks > 1
|
|
except litellm.InternalServerError as e:
|
|
pass
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
# if "429 Resource has been exhausted":
|
|
# return
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_completion_mistral_api_mistral_large_function_call_with_streaming():
|
|
litellm.set_verbose = True
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in Boston today in fahrenheit?",
|
|
}
|
|
]
|
|
try:
|
|
# test without max tokens
|
|
response = completion(
|
|
model="mistral/mistral-large-latest",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto",
|
|
stream=True,
|
|
)
|
|
idx = 0
|
|
for chunk in response:
|
|
print(f"chunk in response: {chunk}")
|
|
assert chunk._hidden_params["custom_llm_provider"] == "mistral"
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1 and chunk.choices[0].finish_reason is None:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
idx += 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_mistral_api_stream()
|
|
|
|
|
|
def test_completion_deep_infra_stream():
|
|
# deep infra,currently includes role in the 2nd chunk
|
|
# waiting for them to make a fix on this
|
|
litellm.set_verbose = True
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
print("testing deep infra streaming")
|
|
response = completion(
|
|
model="deepinfra/meta-llama/Llama-2-70b-chat-hf",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=80,
|
|
)
|
|
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception as e:
|
|
if "Model busy, retry later" in str(e):
|
|
pass
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_deep_infra_stream()
|
|
|
|
|
|
@pytest.mark.skip()
|
|
def test_completion_nlp_cloud_stream():
|
|
try:
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
print("testing nlp cloud streaming")
|
|
response = completion(
|
|
model="nlp_cloud/finetuned-llama-2-70b",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=20,
|
|
)
|
|
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception as e:
|
|
print(f"Error occurred: {e}")
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_nlp_cloud_stream()
|
|
|
|
|
|
def test_completion_claude_stream_bad_key():
|
|
try:
|
|
litellm.cache = None
|
|
litellm.set_verbose = True
|
|
api_key = "bad-key"
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model="claude-instant-1",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=50,
|
|
api_key=api_key,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"1234completion_response: {complete_response}")
|
|
raise Exception("Auth error not raised")
|
|
except AuthenticationError as e:
|
|
print("Auth Error raised")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_claude_stream_bad_key()
|
|
# test_completion_replicate_stream()
|
|
|
|
|
|
@pytest.mark.parametrize("provider", ["vertex_ai_beta"]) # ""
|
|
def test_vertex_ai_stream(provider):
|
|
from test_amazing_vertex_completion import (
|
|
load_vertex_ai_credentials,
|
|
)
|
|
|
|
load_vertex_ai_credentials()
|
|
litellm.set_verbose = True
|
|
litellm.vertex_project = "adroit-crow-413218"
|
|
import random
|
|
|
|
test_models = ["gemini-1.5-pro"]
|
|
for model in test_models:
|
|
try:
|
|
print("making request", model)
|
|
response = completion(
|
|
model="{}/{}".format(provider, model),
|
|
messages=[
|
|
{"role": "user", "content": "Hey, how's it going?"},
|
|
{
|
|
"role": "assistant",
|
|
"content": "I'm doing well. Would like to hear the rest of the story?",
|
|
},
|
|
{"role": "user", "content": "Na"},
|
|
{
|
|
"role": "assistant",
|
|
"content": "No problem, is there anything else i can help you with today?",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "I think you're getting cut off sometimes",
|
|
},
|
|
],
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
is_finished = False
|
|
for idx, chunk in enumerate(response):
|
|
print(f"chunk in response: {chunk}")
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
is_finished = True
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
assert is_finished == True
|
|
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# def test_completion_vertexai_stream():
|
|
# try:
|
|
# import os
|
|
# os.environ["VERTEXAI_PROJECT"] = "pathrise-convert-1606954137718"
|
|
# os.environ["VERTEXAI_LOCATION"] = "us-central1"
|
|
# messages = [
|
|
# {"role": "system", "content": "You are a helpful assistant."},
|
|
# {
|
|
# "role": "user",
|
|
# "content": "how does a court case get to the Supreme Court?",
|
|
# },
|
|
# ]
|
|
# response = completion(
|
|
# model="vertex_ai/chat-bison", messages=messages, stream=True, max_tokens=50
|
|
# )
|
|
# complete_response = ""
|
|
# has_finish_reason = False
|
|
# # Add any assertions here to check the response
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finish_reason = finished
|
|
# if finished:
|
|
# break
|
|
# complete_response += chunk
|
|
# if has_finish_reason is False:
|
|
# raise Exception("finish reason not set for last chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# print(f"completion_response: {complete_response}")
|
|
# except InvalidRequestError as e:
|
|
# pass
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_completion_vertexai_stream()
|
|
|
|
|
|
# def test_completion_vertexai_stream_bad_key():
|
|
# try:
|
|
# import os
|
|
# messages = [
|
|
# {"role": "system", "content": "You are a helpful assistant."},
|
|
# {
|
|
# "role": "user",
|
|
# "content": "how does a court case get to the Supreme Court?",
|
|
# },
|
|
# ]
|
|
# response = completion(
|
|
# model="vertex_ai/chat-bison", messages=messages, stream=True, max_tokens=50
|
|
# )
|
|
# complete_response = ""
|
|
# has_finish_reason = False
|
|
# # Add any assertions here to check the response
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finish_reason = finished
|
|
# if finished:
|
|
# break
|
|
# complete_response += chunk
|
|
# if has_finish_reason is False:
|
|
# raise Exception("finish reason not set for last chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# print(f"completion_response: {complete_response}")
|
|
# except InvalidRequestError as e:
|
|
# pass
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_completion_vertexai_stream_bad_key()
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_completion_databricks_streaming(sync_mode):
|
|
litellm.set_verbose = True
|
|
model_name = "databricks/databricks-dbrx-instruct"
|
|
try:
|
|
if sync_mode:
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
response: litellm.CustomStreamWrapper = completion( # type: ignore
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10, # type: ignore
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
else:
|
|
response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=100, # type: ignore
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
idx = 0
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
async for chunk in response:
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [False, True])
|
|
@pytest.mark.asyncio
|
|
async def test_completion_replicate_llama3_streaming(sync_mode):
|
|
litellm.set_verbose = True
|
|
model_name = "replicate/meta/meta-llama-3-8b-instruct"
|
|
try:
|
|
if sync_mode:
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
response: litellm.CustomStreamWrapper = completion( # type: ignore
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=10, # type: ignore
|
|
stream=True,
|
|
num_retries=3,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
else:
|
|
response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore
|
|
model=model_name,
|
|
messages=messages,
|
|
max_tokens=100, # type: ignore
|
|
stream=True,
|
|
num_retries=3,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
idx = 0
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
async for chunk in response:
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except litellm.UnprocessableEntityError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# TEMP Commented out - replicate throwing an auth error
|
|
# try:
|
|
# litellm.set_verbose = True
|
|
# messages = [
|
|
# {"role": "system", "content": "You are a helpful assistant."},
|
|
# {
|
|
# "role": "user",
|
|
# "content": "how does a court case get to the Supreme Court?",
|
|
# },
|
|
# ]
|
|
# response = completion(
|
|
# model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3", messages=messages, stream=True, max_tokens=50
|
|
# )
|
|
# complete_response = ""
|
|
# has_finish_reason = False
|
|
# # Add any assertions here to check the response
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finish_reason = finished
|
|
# if finished:
|
|
# break
|
|
# complete_response += chunk
|
|
# if has_finish_reason is False:
|
|
# raise Exception("finish reason not set for last chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# print(f"completion_response: {complete_response}")
|
|
# except InvalidRequestError as e:
|
|
# pass
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False]) #
|
|
@pytest.mark.parametrize(
|
|
"model, region",
|
|
[
|
|
["bedrock/ai21.jamba-instruct-v1:0", "us-east-1"],
|
|
["bedrock/cohere.command-r-plus-v1:0", None],
|
|
["anthropic.claude-3-sonnet-20240229-v1:0", None],
|
|
["anthropic.claude-instant-v1", None],
|
|
["mistral.mistral-7b-instruct-v0:2", None],
|
|
["bedrock/amazon.titan-tg1-large", None],
|
|
["meta.llama3-8b-instruct-v1:0", None],
|
|
["cohere.command-text-v14", None],
|
|
],
|
|
)
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_bedrock_httpx_streaming(sync_mode, model, region):
|
|
try:
|
|
litellm.set_verbose = True
|
|
if sync_mode:
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
response: litellm.CustomStreamWrapper = completion( # type: ignore
|
|
model=model,
|
|
messages=messages,
|
|
max_tokens=10, # type: ignore
|
|
stream=True,
|
|
aws_region_name=region,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
else:
|
|
response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore
|
|
model=model,
|
|
messages=messages,
|
|
max_tokens=100, # type: ignore
|
|
stream=True,
|
|
aws_region_name=region,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
idx = 0
|
|
final_chunk: Optional[litellm.ModelResponse] = None
|
|
async for chunk in response:
|
|
final_chunk = chunk
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}\n\nFinalChunk: {final_chunk}")
|
|
except RateLimitError as e:
|
|
print("got rate limit error=", e)
|
|
pass
|
|
except litellm.Timeout:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_bedrock_claude_3_streaming():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response: ModelResponse = completion( # type: ignore
|
|
model="bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
|
|
messages=messages,
|
|
max_tokens=10, # type: ignore
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
has_finish_reason = True
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason == False:
|
|
raise Exception("finish reason not set")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"claude-3-opus-20240229",
|
|
"cohere.command-r-plus-v1:0", # bedrock
|
|
"gpt-3.5-turbo",
|
|
"databricks/databricks-dbrx-instruct", # databricks
|
|
"predibase/llama-3-8b-instruct", # predibase
|
|
],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_parallel_streaming_requests(sync_mode, model):
|
|
"""
|
|
Important prod test.
|
|
"""
|
|
try:
|
|
import threading
|
|
|
|
litellm.set_verbose = True
|
|
messages = [
|
|
{"role": "system", "content": "Be helpful"},
|
|
{"role": "user", "content": "What do you know?"},
|
|
]
|
|
|
|
def sync_test_streaming():
|
|
response: litellm.CustomStreamWrapper = litellm.completion( # type: ignore
|
|
model=model,
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=10,
|
|
timeout=10,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to-check the response
|
|
num_finish_reason = 0
|
|
for chunk in response:
|
|
print(f"chunk: {chunk}")
|
|
if isinstance(chunk, ModelResponse):
|
|
if chunk.choices[0].finish_reason is not None:
|
|
num_finish_reason += 1
|
|
assert num_finish_reason == 1
|
|
|
|
async def test_streaming():
|
|
response: litellm.CustomStreamWrapper = await litellm.acompletion( # type: ignore
|
|
model=model,
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=10,
|
|
timeout=10,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to-check the response
|
|
num_finish_reason = 0
|
|
async for chunk in response:
|
|
print(f"type of chunk: {type(chunk)}")
|
|
if isinstance(chunk, ModelResponse):
|
|
print(f"OUTSIDE CHUNK: {chunk.choices[0]}")
|
|
if chunk.choices[0].finish_reason is not None:
|
|
num_finish_reason += 1
|
|
assert num_finish_reason == 1
|
|
|
|
tasks = []
|
|
for _ in range(2):
|
|
if sync_mode == False:
|
|
tasks.append(test_streaming())
|
|
else:
|
|
thread = threading.Thread(target=sync_test_streaming)
|
|
thread.start()
|
|
tasks.append(thread)
|
|
|
|
if sync_mode == False:
|
|
await asyncio.gather(*tasks)
|
|
else:
|
|
# Wait for all threads to complete
|
|
for thread in tasks:
|
|
thread.join()
|
|
|
|
except RateLimitError:
|
|
pass
|
|
except litellm.Timeout:
|
|
pass
|
|
except litellm.ServiceUnavailableError as e:
|
|
if model == "predibase/llama-3-8b-instruct":
|
|
pass
|
|
else:
|
|
pytest.fail(f"Service Unavailable Error got{str(e)}")
|
|
except litellm.InternalServerError as e:
|
|
if "predibase" in str(e).lower():
|
|
# only skip internal server error from predibase - their endpoint seems quite unstable
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skip(reason="Replicate changed exceptions")
|
|
def test_completion_replicate_stream_bad_key():
|
|
try:
|
|
api_key = "bad-key"
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{
|
|
"role": "user",
|
|
"content": "how does a court case get to the Supreme Court?",
|
|
},
|
|
]
|
|
response = completion(
|
|
model="replicate/meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=50,
|
|
api_key=api_key,
|
|
)
|
|
complete_response = ""
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except AuthenticationError as e:
|
|
# this is an auth error with a bad key
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_replicate_stream_bad_key()
|
|
|
|
|
|
def test_completion_bedrock_claude_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = completion(
|
|
model="bedrock/anthropic.claude-instant-v1",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?",
|
|
}
|
|
],
|
|
temperature=1,
|
|
max_tokens=20,
|
|
stream=True,
|
|
)
|
|
print(response)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
first_chunk_id = None
|
|
for idx, chunk in enumerate(response):
|
|
# print
|
|
if idx == 0:
|
|
first_chunk_id = chunk.id
|
|
else:
|
|
assert (
|
|
chunk.id == first_chunk_id
|
|
), f"chunk ids do not match: {chunk.id} != first chunk id{first_chunk_id}"
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_bedrock_claude_stream()
|
|
|
|
|
|
@pytest.mark.skip(reason="model end of life")
|
|
def test_completion_bedrock_ai21_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = completion(
|
|
model="bedrock/ai21.j2-mid-v1",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?",
|
|
}
|
|
],
|
|
temperature=1,
|
|
max_tokens=20,
|
|
stream=True,
|
|
)
|
|
print(response)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
# print
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_bedrock_ai21_stream()
|
|
|
|
|
|
def test_completion_bedrock_mistral_stream():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = completion(
|
|
model="bedrock/mistral.mixtral-8x7b-instruct-v0:1",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Be as verbose as possible and give as many details as possible, how does a court case get to the Supreme Court?",
|
|
}
|
|
],
|
|
temperature=1,
|
|
max_tokens=20,
|
|
stream=True,
|
|
)
|
|
print(response)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
# print
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except RateLimitError:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skip(reason="stopped using TokenIterator")
|
|
def test_sagemaker_weird_response():
|
|
"""
|
|
When the stream ends, flush any remaining holding chunks.
|
|
"""
|
|
try:
|
|
import json
|
|
|
|
from litellm.llms.sagemaker.sagemaker import TokenIterator
|
|
|
|
chunk = """<s>[INST] Hey, how's it going? [/INST],
|
|
I'm doing well, thanks for asking! How about you? Is there anything you'd like to chat about or ask? I'm here to help with any questions you might have."""
|
|
|
|
data = "\n".join(
|
|
map(
|
|
lambda x: f"data: {json.dumps({'token': {'text': x.strip()}})}",
|
|
chunk.strip().split(","),
|
|
)
|
|
)
|
|
stream = bytes(data, encoding="utf8")
|
|
|
|
# Modify the array to be a dictionary with "PayloadPart" and "Bytes" keys.
|
|
stream_iterator = iter([{"PayloadPart": {"Bytes": stream}}])
|
|
|
|
token_iter = TokenIterator(stream_iterator)
|
|
|
|
# for token in token_iter:
|
|
# print(token)
|
|
litellm.set_verbose = True
|
|
|
|
logging_obj = litellm.Logging(
|
|
model="berri-benchmarking-Llama-2-70b-chat-hf-4",
|
|
messages=messages,
|
|
stream=True,
|
|
litellm_call_id="1234",
|
|
function_id="function_id",
|
|
call_type="acompletion",
|
|
start_time=time.time(),
|
|
)
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=token_iter,
|
|
model="berri-benchmarking-Llama-2-70b-chat-hf-4",
|
|
custom_llm_provider="sagemaker",
|
|
logging_obj=logging_obj,
|
|
)
|
|
complete_response = ""
|
|
for idx, chunk in enumerate(response):
|
|
# print
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
assert len(complete_response) > 0
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# test_sagemaker_weird_response()
|
|
|
|
|
|
@pytest.mark.skip(reason="Move to being a mock endpoint")
|
|
@pytest.mark.asyncio
|
|
async def test_sagemaker_streaming_async():
|
|
try:
|
|
messages = [{"role": "user", "content": "Hey, how's it going?"}]
|
|
litellm.set_verbose = True
|
|
response = await litellm.acompletion(
|
|
model="sagemaker/jumpstart-dft-hf-llm-mistral-7b-ins-20240329-150233",
|
|
model_id="huggingface-llm-mistral-7b-instruct-20240329-150233",
|
|
messages=messages,
|
|
temperature=0.2,
|
|
max_tokens=80,
|
|
aws_region_name=os.getenv("AWS_REGION_NAME_2"),
|
|
aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID_2"),
|
|
aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY_2"),
|
|
stream=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
idx = 0
|
|
async for chunk in response:
|
|
# print
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
idx += 1
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception as e:
|
|
pytest.fail(f"An exception occurred - {str(e)}")
|
|
|
|
|
|
# asyncio.run(test_sagemaker_streaming_async())
|
|
|
|
|
|
@pytest.mark.skip(reason="costly sagemaker deployment. Move to mock implementation")
|
|
def test_completion_sagemaker_stream():
|
|
try:
|
|
response = completion(
|
|
model="sagemaker/jumpstart-dft-hf-llm-mistral-7b-ins-20240329-150233",
|
|
model_id="huggingface-llm-mistral-7b-instruct-20240329-150233",
|
|
messages=messages,
|
|
temperature=0.2,
|
|
max_tokens=80,
|
|
aws_region_name=os.getenv("AWS_REGION_NAME_2"),
|
|
aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID_2"),
|
|
aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY_2"),
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.skip(reason="Account deleted by IBM.")
|
|
def test_completion_watsonx_stream():
|
|
litellm.set_verbose = True
|
|
try:
|
|
response = completion(
|
|
model="watsonx/ibm/granite-13b-chat-v2",
|
|
messages=messages,
|
|
temperature=0.5,
|
|
max_tokens=20,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("finish reason not set for last chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
except litellm.RateLimitError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_sagemaker_stream()
|
|
|
|
|
|
# def test_maritalk_streaming():
|
|
# messages = [{"role": "user", "content": "Hey"}]
|
|
# try:
|
|
# response = completion("maritalk", messages=messages, stream=True)
|
|
# complete_response = ""
|
|
# start_time = time.time()
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# complete_response += chunk
|
|
# if finished:
|
|
# break
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# except Exception:
|
|
# pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
# test_maritalk_streaming()
|
|
# test on openai completion call
|
|
|
|
|
|
# # test on ai21 completion call
|
|
def ai21_completion_call():
|
|
try:
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": "You are an all-knowing oracle",
|
|
},
|
|
{"role": "user", "content": "What is the meaning of the Universe?"},
|
|
]
|
|
response = completion(
|
|
model="j2-ultra", messages=messages, stream=True, max_tokens=500
|
|
)
|
|
print(f"response: {response}")
|
|
has_finished = False
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finished = finished
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
if has_finished is False:
|
|
raise Exception("finished reason missing from final chunk")
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception:
|
|
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
|
|
|
|
# ai21_completion_call()
|
|
|
|
|
|
def ai21_completion_call_bad_key():
|
|
try:
|
|
api_key = "bad-key"
|
|
response = completion(
|
|
model="j2-ultra", messages=messages, stream=True, api_key=api_key
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"completion_response: {complete_response}")
|
|
except Exception:
|
|
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
|
|
|
|
# ai21_completion_call_bad_key()
|
|
|
|
|
|
@pytest.mark.skip(reason="flaky test")
|
|
@pytest.mark.asyncio
|
|
async def test_hf_completion_tgi_stream():
|
|
try:
|
|
response = await acompletion(
|
|
model="huggingface/HuggingFaceH4/zephyr-7b-beta",
|
|
messages=[{"content": "Hello, how are you?", "role": "user"}],
|
|
stream=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
idx += 1
|
|
print(f"completion_response: {complete_response}")
|
|
except litellm.ServiceUnavailableError as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# hf_test_completion_tgi_stream()
|
|
|
|
# def test_completion_aleph_alpha():
|
|
# try:
|
|
# response = completion(
|
|
# model="luminous-base", messages=messages, stream=True
|
|
# )
|
|
# # Add any assertions here to check the response
|
|
# has_finished = False
|
|
# complete_response = ""
|
|
# start_time = time.time()
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finished = finished
|
|
# complete_response += chunk
|
|
# if finished:
|
|
# break
|
|
# if has_finished is False:
|
|
# raise Exception("finished reason missing from final chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# # test_completion_aleph_alpha()
|
|
|
|
# def test_completion_aleph_alpha_bad_key():
|
|
# try:
|
|
# api_key = "bad-key"
|
|
# response = completion(
|
|
# model="luminous-base", messages=messages, stream=True, api_key=api_key
|
|
# )
|
|
# # Add any assertions here to check the response
|
|
# has_finished = False
|
|
# complete_response = ""
|
|
# start_time = time.time()
|
|
# for idx, chunk in enumerate(response):
|
|
# chunk, finished = streaming_format_tests(idx, chunk)
|
|
# has_finished = finished
|
|
# complete_response += chunk
|
|
# if finished:
|
|
# break
|
|
# if has_finished is False:
|
|
# raise Exception("finished reason missing from final chunk")
|
|
# if complete_response.strip() == "":
|
|
# raise Exception("Empty response received")
|
|
# except InvalidRequestError as e:
|
|
# pass
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
|
|
# test_completion_aleph_alpha_bad_key()
|
|
|
|
|
|
# test on openai completion call
|
|
def test_openai_chat_completion_call():
|
|
litellm.set_verbose = False
|
|
litellm.return_response_headers = True
|
|
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
|
|
assert isinstance(
|
|
response._hidden_params["additional_headers"][
|
|
"llm_provider-x-ratelimit-remaining-requests"
|
|
],
|
|
str,
|
|
)
|
|
|
|
print(f"response._hidden_params: {response._hidden_params}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
print(f"outside chunk: {chunk}")
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
# print(f'complete_chunk: {complete_response}')
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
|
|
|
|
# test_openai_chat_completion_call()
|
|
|
|
|
|
def test_openai_chat_completion_complete_response_call():
|
|
try:
|
|
complete_response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
stream=True,
|
|
complete_response=True,
|
|
)
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# test_openai_chat_completion_complete_response_call()
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"gpt-3.5-turbo",
|
|
"azure/chatgpt-v-2",
|
|
"claude-3-haiku-20240307",
|
|
"o1-preview",
|
|
"azure/fake-o1-mini",
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"sync",
|
|
[True, False],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_openai_stream_options_call(model, sync):
|
|
litellm.enable_preview_features = True
|
|
litellm.set_verbose = True
|
|
usage = None
|
|
chunks = []
|
|
if sync:
|
|
response = litellm.completion(
|
|
model=model,
|
|
messages=[
|
|
{"role": "user", "content": "say GM - we're going to make it "},
|
|
],
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
for chunk in response:
|
|
print("chunk: ", chunk)
|
|
chunks.append(chunk)
|
|
else:
|
|
response = await litellm.acompletion(
|
|
model=model,
|
|
messages=[{"role": "user", "content": "say GM - we're going to make it "}],
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
|
|
async for chunk in response:
|
|
print("chunk: ", chunk)
|
|
chunks.append(chunk)
|
|
|
|
last_chunk = chunks[-1]
|
|
print("last chunk: ", last_chunk)
|
|
|
|
"""
|
|
Assert that:
|
|
- Last Chunk includes Usage
|
|
- All chunks prior to last chunk have usage=None
|
|
"""
|
|
|
|
assert last_chunk.usage is not None
|
|
assert isinstance(last_chunk.usage, litellm.Usage)
|
|
assert last_chunk.usage.total_tokens > 0
|
|
assert last_chunk.usage.prompt_tokens > 0
|
|
assert last_chunk.usage.completion_tokens > 0
|
|
|
|
# assert all non last chunks have usage=None
|
|
# Improved assertion with detailed error message
|
|
non_last_chunks_with_usage = [
|
|
chunk
|
|
for chunk in chunks[:-1]
|
|
if hasattr(chunk, "usage") and chunk.usage is not None
|
|
]
|
|
assert (
|
|
not non_last_chunks_with_usage
|
|
), f"Non-last chunks with usage not None:\n" + "\n".join(
|
|
f"Chunk ID: {chunk.id}, Usage: {chunk.usage}, Content: {chunk.choices[0].delta.content}"
|
|
for chunk in non_last_chunks_with_usage
|
|
)
|
|
|
|
|
|
def test_openai_stream_options_call_text_completion():
|
|
litellm.set_verbose = False
|
|
for idx in range(3):
|
|
try:
|
|
response = litellm.text_completion(
|
|
model="gpt-3.5-turbo-instruct",
|
|
prompt="say GM - we're going to make it ",
|
|
stream=True,
|
|
stream_options={"include_usage": True},
|
|
max_tokens=10,
|
|
)
|
|
usage = None
|
|
chunks = []
|
|
for chunk in response:
|
|
print("chunk: ", chunk)
|
|
chunks.append(chunk)
|
|
|
|
last_chunk = chunks[-1]
|
|
print("last chunk: ", last_chunk)
|
|
|
|
"""
|
|
Assert that:
|
|
- Last Chunk includes Usage
|
|
- All chunks prior to last chunk have usage=None
|
|
"""
|
|
|
|
assert last_chunk.usage is not None
|
|
assert last_chunk.usage.total_tokens > 0
|
|
assert last_chunk.usage.prompt_tokens > 0
|
|
assert last_chunk.usage.completion_tokens > 0
|
|
|
|
# assert all non last chunks have usage=None
|
|
assert all(chunk.usage is None for chunk in chunks[:-1])
|
|
break
|
|
except Exception as e:
|
|
if idx < 2:
|
|
pass
|
|
else:
|
|
raise e
|
|
|
|
|
|
def test_openai_text_completion_call():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = completion(
|
|
model="gpt-3.5-turbo-instruct", messages=messages, stream=True
|
|
)
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
print(f"chunk: {chunk}")
|
|
complete_response += chunk
|
|
if finished:
|
|
break
|
|
# print(f'complete_chunk: {complete_response}')
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# test_openai_text_completion_call()
|
|
|
|
|
|
# # test on together ai completion call - starcoder
|
|
def test_together_ai_completion_call_mistral():
|
|
try:
|
|
litellm.set_verbose = False
|
|
start_time = time.time()
|
|
response = completion(
|
|
model="together_ai/mistralai/Mistral-7B-Instruct-v0.2",
|
|
messages=messages,
|
|
logger_fn=logger_fn,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
print(f"returned response object: {response}")
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("Finish reason not set for last chunk")
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# # test on together ai completion call - starcoder
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_openai_o1_completion_call_streaming(sync_mode):
|
|
try:
|
|
litellm.set_verbose = False
|
|
if sync_mode:
|
|
response = completion(
|
|
model="o1-preview",
|
|
messages=messages,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
print(f"returned response object: {response}")
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("Finish reason not set for last chunk")
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
else:
|
|
response = await acompletion(
|
|
model="o1-preview",
|
|
messages=messages,
|
|
stream=True,
|
|
)
|
|
complete_response = ""
|
|
print(f"returned response object: {response}")
|
|
has_finish_reason = False
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if has_finish_reason is False:
|
|
raise Exception("Finish reason not set for last chunk")
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
pytest.fail(f"error occurred: {traceback.format_exc()}")
|
|
|
|
|
|
def test_together_ai_completion_call_starcoder_bad_key():
|
|
try:
|
|
api_key = "bad-key"
|
|
start_time = time.time()
|
|
response = completion(
|
|
model="together_ai/bigcode/starcoder",
|
|
messages=messages,
|
|
stream=True,
|
|
api_key=api_key,
|
|
)
|
|
complete_response = ""
|
|
has_finish_reason = False
|
|
for idx, chunk in enumerate(response):
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
has_finish_reason = finished
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
if has_finish_reason is False:
|
|
raise Exception("Finish reason not set for last chunk")
|
|
if complete_response == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except BadRequestError as e:
|
|
pass
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# test_together_ai_completion_call_starcoder_bad_key()
|
|
#### Test Function calling + streaming ####
|
|
|
|
|
|
def test_completion_openai_with_functions():
|
|
function1 = [
|
|
{
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
}
|
|
]
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = completion(
|
|
model="gpt-3.5-turbo-1106",
|
|
messages=[{"role": "user", "content": "what's the weather in SF"}],
|
|
functions=function1,
|
|
stream=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
print(response)
|
|
for chunk in response:
|
|
print(chunk)
|
|
if chunk["choices"][0]["finish_reason"] == "stop":
|
|
break
|
|
print(chunk["choices"][0]["finish_reason"])
|
|
print(chunk["choices"][0]["delta"]["content"])
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_completion_openai_with_functions()
|
|
#### Test Async streaming ####
|
|
|
|
|
|
# # test on ai21 completion call
|
|
async def ai21_async_completion_call():
|
|
try:
|
|
response = completion(
|
|
model="j2-ultra", messages=messages, stream=True, logger_fn=logger_fn
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
# Change for loop to async for loop
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# asyncio.run(ai21_async_completion_call())
|
|
|
|
|
|
async def completion_call():
|
|
try:
|
|
response = completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
stream=True,
|
|
logger_fn=logger_fn,
|
|
max_tokens=10,
|
|
)
|
|
print(f"response: {response}")
|
|
complete_response = ""
|
|
start_time = time.time()
|
|
# Change for loop to async for loop
|
|
idx = 0
|
|
async for chunk in response:
|
|
chunk, finished = streaming_format_tests(idx, chunk)
|
|
if finished:
|
|
break
|
|
complete_response += chunk
|
|
idx += 1
|
|
if complete_response.strip() == "":
|
|
raise Exception("Empty response received")
|
|
print(f"complete response: {complete_response}")
|
|
except Exception:
|
|
print(f"error occurred: {traceback.format_exc()}")
|
|
pass
|
|
|
|
|
|
# asyncio.run(completion_call())
|
|
|
|
#### Test Function Calling + Streaming ####
|
|
|
|
final_openai_function_call_example = {
|
|
"id": "chatcmpl-7zVNA4sXUftpIg6W8WlntCyeBj2JY",
|
|
"object": "chat.completion",
|
|
"created": 1694892960,
|
|
"model": "gpt-3.5-turbo",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": None,
|
|
"function_call": {
|
|
"name": "get_current_weather",
|
|
"arguments": '{\n "location": "Boston, MA"\n}',
|
|
},
|
|
},
|
|
"finish_reason": "function_call",
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": 82, "completion_tokens": 18, "total_tokens": 100},
|
|
}
|
|
|
|
function_calling_output_structure = {
|
|
"id": str,
|
|
"object": str,
|
|
"created": int,
|
|
"model": str,
|
|
"choices": [
|
|
{
|
|
"index": int,
|
|
"message": {
|
|
"role": str,
|
|
"content": (type(None), str),
|
|
"function_call": {"name": str, "arguments": str},
|
|
},
|
|
"finish_reason": str,
|
|
}
|
|
],
|
|
"usage": {"prompt_tokens": int, "completion_tokens": int, "total_tokens": int},
|
|
}
|
|
|
|
|
|
def validate_final_structure(item, structure=function_calling_output_structure):
|
|
if isinstance(item, list):
|
|
if not all(validate_final_structure(i, structure[0]) for i in item):
|
|
return Exception(
|
|
"Function calling final output doesn't match expected output format"
|
|
)
|
|
elif isinstance(item, dict):
|
|
if not all(
|
|
k in item and validate_final_structure(item[k], v)
|
|
for k, v in structure.items()
|
|
):
|
|
return Exception(
|
|
"Function calling final output doesn't match expected output format"
|
|
)
|
|
else:
|
|
if not isinstance(item, structure):
|
|
return Exception(
|
|
"Function calling final output doesn't match expected output format"
|
|
)
|
|
return True
|
|
|
|
|
|
first_openai_function_call_example = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {
|
|
"role": "assistant",
|
|
"content": None,
|
|
"function_call": {"name": "get_current_weather", "arguments": ""},
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
|
|
|
|
def validate_first_function_call_chunk_structure(item):
|
|
if not (isinstance(item, dict) or isinstance(item, litellm.ModelResponse)):
|
|
raise Exception(f"Incorrect format, type of item: {type(item)}")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in item:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(item["choices"], list) or not item["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in item["choices"]:
|
|
if not (
|
|
isinstance(choice, dict)
|
|
or isinstance(choice, litellm.utils.StreamingChoices)
|
|
):
|
|
raise Exception(f"Incorrect format, type of choice: {type(choice)}")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not (
|
|
isinstance(choice["delta"], dict)
|
|
or isinstance(choice["delta"], litellm.utils.Delta)
|
|
):
|
|
raise Exception(
|
|
f"Incorrect format, type of choice: {type(choice['delta'])}"
|
|
)
|
|
|
|
required_keys_in_delta = {"role", "content", "function_call"}
|
|
for key in required_keys_in_delta:
|
|
if key not in choice["delta"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not (
|
|
isinstance(choice["delta"]["function_call"], dict)
|
|
or isinstance(choice["delta"]["function_call"], BaseModel)
|
|
):
|
|
raise Exception(
|
|
f"Incorrect format, type of function call: {type(choice['delta']['function_call'])}"
|
|
)
|
|
|
|
required_keys_in_function_call = {"name", "arguments"}
|
|
for key in required_keys_in_function_call:
|
|
if not hasattr(choice["delta"]["function_call"], key):
|
|
raise Exception(
|
|
f"Incorrect format, expected key={key}; actual keys: {choice['delta']['function_call']}, eval: {hasattr(choice['delta']['function_call'], key)}"
|
|
)
|
|
|
|
return True
|
|
|
|
|
|
second_function_call_chunk_format = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"function_call": {"arguments": "{\n"}},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
}
|
|
|
|
|
|
def validate_second_function_call_chunk_structure(data):
|
|
if not isinstance(data, dict):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in data:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(data["choices"], list) or not data["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in data["choices"]:
|
|
if not isinstance(choice, dict):
|
|
raise Exception("Incorrect format")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
if (
|
|
"function_call" not in choice["delta"]
|
|
or "arguments" not in choice["delta"]["function_call"]
|
|
):
|
|
raise Exception("Incorrect format")
|
|
|
|
return True
|
|
|
|
|
|
final_function_call_chunk_example = {
|
|
"id": "chatcmpl-7zVRoE5HjHYsCMaVSNgOjzdhbS3P0",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694893248,
|
|
"model": "gpt-3.5-turbo",
|
|
"choices": [{"index": 0, "delta": {}, "finish_reason": "function_call"}],
|
|
}
|
|
|
|
|
|
def validate_final_function_call_chunk_structure(data):
|
|
if not (isinstance(data, dict) or isinstance(data, litellm.ModelResponse)):
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys = {"id", "object", "created", "model", "choices"}
|
|
for key in required_keys:
|
|
if key not in data:
|
|
raise Exception("Incorrect format")
|
|
|
|
if not isinstance(data["choices"], list) or not data["choices"]:
|
|
raise Exception("Incorrect format")
|
|
|
|
required_keys_in_choices_array = {"index", "delta", "finish_reason"}
|
|
for choice in data["choices"]:
|
|
if not (
|
|
isinstance(choice, dict) or isinstance(choice["delta"], litellm.utils.Delta)
|
|
):
|
|
raise Exception("Incorrect format")
|
|
for key in required_keys_in_choices_array:
|
|
if key not in choice:
|
|
raise Exception("Incorrect format")
|
|
|
|
return True
|
|
|
|
|
|
def streaming_and_function_calling_format_tests(idx, chunk):
|
|
extracted_chunk = ""
|
|
finished = False
|
|
print(f"idx: {idx}")
|
|
print(f"chunk: {chunk}")
|
|
decision = False
|
|
if idx == 0: # ensure role assistant is set
|
|
decision = validate_first_function_call_chunk_structure(chunk)
|
|
role = chunk["choices"][0]["delta"]["role"]
|
|
assert role == "assistant"
|
|
elif idx != 0: # second chunk
|
|
try:
|
|
decision = validate_second_function_call_chunk_structure(data=chunk)
|
|
except Exception: # check if it's the last chunk (returns an empty delta {} )
|
|
decision = validate_final_function_call_chunk_structure(data=chunk)
|
|
finished = True
|
|
if "content" in chunk["choices"][0]["delta"]:
|
|
extracted_chunk = chunk["choices"][0]["delta"]["content"]
|
|
if decision == False:
|
|
raise Exception("incorrect format")
|
|
return extracted_chunk, finished
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
# "gpt-3.5-turbo",
|
|
# "anthropic.claude-3-sonnet-20240229-v1:0",
|
|
"claude-3-haiku-20240307",
|
|
],
|
|
)
|
|
def test_streaming_and_function_calling(model):
|
|
import json
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
messages = [{"role": "user", "content": "What is the weather like in Boston?"}]
|
|
try:
|
|
# litellm.set_verbose = True
|
|
response: litellm.CustomStreamWrapper = completion(
|
|
model=model,
|
|
tools=tools,
|
|
messages=messages,
|
|
stream=True,
|
|
tool_choice="required",
|
|
) # type: ignore
|
|
# Add any assertions here to check the response
|
|
json_str = ""
|
|
for idx, chunk in enumerate(response):
|
|
# continue
|
|
# print("\n{}\n".format(chunk))
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
if chunk.choices[0].delta.tool_calls is not None:
|
|
json_str += chunk.choices[0].delta.tool_calls[0].function.arguments
|
|
|
|
print(json.loads(json_str))
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
raise e
|
|
|
|
|
|
# test_azure_streaming_and_function_calling()
|
|
|
|
|
|
def test_success_callback_streaming():
|
|
def success_callback(kwargs, completion_response, start_time, end_time):
|
|
print(
|
|
{
|
|
"success": True,
|
|
"input": kwargs,
|
|
"output": completion_response,
|
|
"start_time": start_time,
|
|
"end_time": end_time,
|
|
}
|
|
)
|
|
|
|
litellm.success_callback = [success_callback]
|
|
|
|
messages = [{"role": "user", "content": "hello"}]
|
|
print("TESTING LITELLM COMPLETION CALL")
|
|
response = litellm.completion(
|
|
model="gpt-3.5-turbo",
|
|
messages=messages,
|
|
stream=True,
|
|
max_tokens=5,
|
|
)
|
|
print(response)
|
|
|
|
for chunk in response:
|
|
print(chunk["choices"][0])
|
|
|
|
|
|
# test_success_callback_streaming()
|
|
|
|
from typing import List, Optional
|
|
|
|
#### STREAMING + FUNCTION CALLING ###
|
|
from pydantic import BaseModel
|
|
|
|
|
|
class Function(BaseModel):
|
|
name: str
|
|
arguments: str
|
|
|
|
|
|
class ToolCalls(BaseModel):
|
|
index: int
|
|
id: str
|
|
type: str
|
|
function: Function
|
|
|
|
|
|
class Delta(BaseModel):
|
|
role: str
|
|
content: Optional[str]
|
|
tool_calls: List[ToolCalls]
|
|
|
|
|
|
class Choices(BaseModel):
|
|
index: int
|
|
delta: Delta
|
|
logprobs: Optional[str]
|
|
finish_reason: Optional[str]
|
|
|
|
|
|
class Chunk(BaseModel):
|
|
id: str
|
|
object: str
|
|
created: int
|
|
model: str
|
|
# system_fingerprint: str
|
|
choices: List[Choices]
|
|
|
|
|
|
def validate_first_streaming_function_calling_chunk(chunk: ModelResponse):
|
|
chunk_instance = Chunk(**chunk.model_dump())
|
|
|
|
|
|
### Chunk 1
|
|
|
|
|
|
# {
|
|
# "id": "chatcmpl-8vdVjtzxc0JqGjq93NxC79dMp6Qcs",
|
|
# "object": "chat.completion.chunk",
|
|
# "created": 1708747267,
|
|
# "model": "gpt-3.5-turbo-0125",
|
|
# "system_fingerprint": "fp_86156a94a0",
|
|
# "choices": [
|
|
# {
|
|
# "index": 0,
|
|
# "delta": {
|
|
# "role": "assistant",
|
|
# "content": null,
|
|
# "tool_calls": [
|
|
# {
|
|
# "index": 0,
|
|
# "id": "call_oN10vaaC9iA8GLFRIFwjCsN7",
|
|
# "type": "function",
|
|
# "function": {
|
|
# "name": "get_current_weather",
|
|
# "arguments": ""
|
|
# }
|
|
# }
|
|
# ]
|
|
# },
|
|
# "logprobs": null,
|
|
# "finish_reason": null
|
|
# }
|
|
# ]
|
|
# }
|
|
class Function2(BaseModel):
|
|
arguments: str
|
|
|
|
|
|
class ToolCalls2(BaseModel):
|
|
index: int
|
|
function: Optional[Function2]
|
|
|
|
|
|
class Delta2(BaseModel):
|
|
tool_calls: List[ToolCalls2]
|
|
|
|
|
|
class Choices2(BaseModel):
|
|
index: int
|
|
delta: Delta2
|
|
logprobs: Optional[str]
|
|
finish_reason: Optional[str]
|
|
|
|
|
|
class Chunk2(BaseModel):
|
|
id: str
|
|
object: str
|
|
created: int
|
|
model: str
|
|
system_fingerprint: Optional[str]
|
|
choices: List[Choices2]
|
|
|
|
|
|
## Chunk 2
|
|
|
|
# {
|
|
# "id": "chatcmpl-8vdVjtzxc0JqGjq93NxC79dMp6Qcs",
|
|
# "object": "chat.completion.chunk",
|
|
# "created": 1708747267,
|
|
# "model": "gpt-3.5-turbo-0125",
|
|
# "system_fingerprint": "fp_86156a94a0",
|
|
# "choices": [
|
|
# {
|
|
# "index": 0,
|
|
# "delta": {
|
|
# "tool_calls": [
|
|
# {
|
|
# "index": 0,
|
|
# "function": {
|
|
# "arguments": "{\""
|
|
# }
|
|
# }
|
|
# ]
|
|
# },
|
|
# "logprobs": null,
|
|
# "finish_reason": null
|
|
# }
|
|
# ]
|
|
# }
|
|
|
|
|
|
def validate_second_streaming_function_calling_chunk(chunk: ModelResponse):
|
|
chunk_instance = Chunk2(**chunk.model_dump())
|
|
|
|
|
|
class Delta3(BaseModel):
|
|
content: Optional[str] = None
|
|
role: Optional[str] = None
|
|
function_call: Optional[dict] = None
|
|
tool_calls: Optional[List] = None
|
|
|
|
|
|
class Choices3(BaseModel):
|
|
index: int
|
|
delta: Delta3
|
|
logprobs: Optional[str]
|
|
finish_reason: str
|
|
|
|
|
|
class Chunk3(BaseModel):
|
|
id: str
|
|
object: str
|
|
created: int
|
|
model: str
|
|
# system_fingerprint: str
|
|
choices: List[Choices3]
|
|
|
|
|
|
def validate_final_streaming_function_calling_chunk(chunk: ModelResponse):
|
|
chunk_instance = Chunk3(**chunk.model_dump())
|
|
|
|
|
|
def test_azure_streaming_and_function_calling():
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
messages = [{"role": "user", "content": "What is the weather like in Boston?"}]
|
|
try:
|
|
response = completion(
|
|
model="azure/gpt-4-nov-release",
|
|
tools=tools,
|
|
tool_choice="auto",
|
|
messages=messages,
|
|
stream=True,
|
|
api_base=os.getenv("AZURE_FRANCE_API_BASE"),
|
|
api_key=os.getenv("AZURE_FRANCE_API_KEY"),
|
|
api_version="2024-02-15-preview",
|
|
)
|
|
# Add any assertions here to check the response
|
|
for idx, chunk in enumerate(response):
|
|
print(f"chunk: {chunk}")
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.asyncio
|
|
async def test_completion_azure_ai_mistral_invalid_params(sync_mode):
|
|
try:
|
|
import os
|
|
|
|
litellm.set_verbose = True
|
|
|
|
os.environ["AZURE_AI_API_BASE"] = os.getenv("AZURE_MISTRAL_API_BASE", "")
|
|
os.environ["AZURE_AI_API_KEY"] = os.getenv("AZURE_MISTRAL_API_KEY", "")
|
|
|
|
data = {
|
|
"model": "azure_ai/mistral",
|
|
"messages": [{"role": "user", "content": "What is the meaning of life?"}],
|
|
"frequency_penalty": 0.1,
|
|
"presence_penalty": 0.1,
|
|
"drop_params": True,
|
|
"stream": True,
|
|
}
|
|
if sync_mode:
|
|
response: litellm.ModelResponse = completion(**data) # type: ignore
|
|
for chunk in response:
|
|
print(chunk)
|
|
else:
|
|
response: litellm.ModelResponse = await litellm.acompletion(**data) # type: ignore
|
|
|
|
async for chunk in response:
|
|
print(chunk)
|
|
except litellm.Timeout as e:
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_azure_astreaming_and_function_calling():
|
|
import uuid
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": f"What is the weather like in Boston? {uuid.uuid4()}",
|
|
}
|
|
]
|
|
from litellm.caching.caching import Cache
|
|
|
|
litellm.cache = Cache(
|
|
type="redis",
|
|
host=os.environ["REDIS_HOST"],
|
|
port=os.environ["REDIS_PORT"],
|
|
password=os.environ["REDIS_PASSWORD"],
|
|
)
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = await litellm.acompletion(
|
|
model="azure/gpt-4-nov-release",
|
|
tools=tools,
|
|
tool_choice="auto",
|
|
messages=messages,
|
|
stream=True,
|
|
api_base=os.getenv("AZURE_FRANCE_API_BASE"),
|
|
api_key=os.getenv("AZURE_FRANCE_API_KEY"),
|
|
api_version="2024-02-15-preview",
|
|
caching=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
idx = 0
|
|
async for chunk in response:
|
|
print(f"chunk: {chunk}")
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
idx += 1
|
|
|
|
## CACHING TEST
|
|
print("\n\nCACHING TESTS\n\n")
|
|
response = await litellm.acompletion(
|
|
model="azure/gpt-4-nov-release",
|
|
tools=tools,
|
|
tool_choice="auto",
|
|
messages=messages,
|
|
stream=True,
|
|
api_base=os.getenv("AZURE_FRANCE_API_BASE"),
|
|
api_key=os.getenv("AZURE_FRANCE_API_KEY"),
|
|
api_version="2024-02-15-preview",
|
|
caching=True,
|
|
)
|
|
# Add any assertions here to check the response
|
|
idx = 0
|
|
async for chunk in response:
|
|
print(f"chunk: {chunk}")
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1 and chunk.choices[0].finish_reason is None:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
idx += 1
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
raise e
|
|
|
|
|
|
def test_completion_claude_3_function_call_with_streaming():
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in Boston today in fahrenheit?",
|
|
}
|
|
]
|
|
try:
|
|
# test without max tokens
|
|
response = completion(
|
|
model="claude-3-opus-20240229",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="required",
|
|
stream=True,
|
|
)
|
|
idx = 0
|
|
for chunk in response:
|
|
print(f"chunk in response: {chunk}")
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1 and chunk.choices[0].finish_reason is None:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
assert "usage" in chunk._hidden_params
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
idx += 1
|
|
# raise Exception("it worked!")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"gemini/gemini-1.5-flash",
|
|
], # "claude-3-opus-20240229"
|
|
) #
|
|
@pytest.mark.asyncio
|
|
async def test_acompletion_claude_3_function_call_with_streaming(model):
|
|
litellm.set_verbose = True
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "generate_series_of_questions",
|
|
"description": "Generate a series of questions, given a topic.",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"questions": {
|
|
"type": "array",
|
|
"description": "The questions to be generated.",
|
|
"items": {"type": "string"},
|
|
},
|
|
},
|
|
"required": ["questions"],
|
|
},
|
|
},
|
|
},
|
|
]
|
|
SYSTEM_PROMPT = "You are an AI assistant"
|
|
messages = [
|
|
{"role": "system", "content": SYSTEM_PROMPT},
|
|
{
|
|
"role": "user",
|
|
"content": "Generate 3 questions about civil engineering.",
|
|
},
|
|
]
|
|
try:
|
|
# test without max tokens
|
|
response = await acompletion(
|
|
model=model,
|
|
# model="claude-3-5-sonnet-20240620",
|
|
messages=messages,
|
|
stream=True,
|
|
temperature=0.75,
|
|
tools=tools,
|
|
stream_options={"include_usage": True},
|
|
)
|
|
idx = 0
|
|
print(f"response: {response}")
|
|
async for chunk in response:
|
|
print(f"chunk in test: {chunk}")
|
|
if idx == 0:
|
|
assert (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments is not None
|
|
)
|
|
assert isinstance(
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments, str
|
|
)
|
|
validate_first_streaming_function_calling_chunk(chunk=chunk)
|
|
elif idx == 1 and chunk.choices[0].finish_reason is None:
|
|
validate_second_streaming_function_calling_chunk(chunk=chunk)
|
|
elif chunk.choices[0].finish_reason is not None: # last chunk
|
|
validate_final_streaming_function_calling_chunk(chunk=chunk)
|
|
idx += 1
|
|
# raise Exception("it worked! ")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
class ModelResponseIterator:
|
|
def __init__(self, model_response):
|
|
self.model_response = model_response
|
|
self.is_done = False
|
|
|
|
# Sync iterator
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
if self.is_done:
|
|
raise StopIteration
|
|
self.is_done = True
|
|
return self.model_response
|
|
|
|
# Async iterator
|
|
def __aiter__(self):
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
if self.is_done:
|
|
raise StopAsyncIteration
|
|
self.is_done = True
|
|
return self.model_response
|
|
|
|
|
|
def test_unit_test_custom_stream_wrapper():
|
|
"""
|
|
Test if last streaming chunk ends with '?', if the message repeats itself.
|
|
"""
|
|
litellm.set_verbose = False
|
|
chunk = {
|
|
"id": "chatcmpl-123",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694268190,
|
|
"model": "gpt-3.5-turbo-0125",
|
|
"system_fingerprint": "fp_44709d6fcb",
|
|
"choices": [
|
|
{"index": 0, "delta": {"content": "How are you?"}, "finish_reason": "stop"}
|
|
],
|
|
}
|
|
chunk = litellm.ModelResponse(**chunk, stream=True)
|
|
|
|
completion_stream = ModelResponseIterator(model_response=chunk)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-3.5-turbo",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
freq = 0
|
|
for chunk in response:
|
|
if chunk.choices[0].delta.content is not None:
|
|
if "How are you?" in chunk.choices[0].delta.content:
|
|
freq += 1
|
|
assert freq == 1
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loop_amount",
|
|
[
|
|
litellm.REPEATED_STREAMING_CHUNK_LIMIT + 1,
|
|
litellm.REPEATED_STREAMING_CHUNK_LIMIT - 1,
|
|
],
|
|
)
|
|
@pytest.mark.parametrize(
|
|
"chunk_value, expected_chunk_fail",
|
|
[("How are you?", True), ("{", False), ("", False), (None, False)],
|
|
)
|
|
def test_unit_test_custom_stream_wrapper_repeating_chunk(
|
|
loop_amount, chunk_value, expected_chunk_fail
|
|
):
|
|
"""
|
|
Test if InternalServerError raised if model enters infinite loop
|
|
|
|
Test if request passes if model loop is below accepted limit
|
|
"""
|
|
litellm.set_verbose = False
|
|
chunks = [
|
|
litellm.ModelResponse(
|
|
**{
|
|
"id": "chatcmpl-123",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694268190,
|
|
"model": "gpt-3.5-turbo-0125",
|
|
"system_fingerprint": "fp_44709d6fcb",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": chunk_value},
|
|
"finish_reason": "stop",
|
|
}
|
|
],
|
|
},
|
|
stream=True,
|
|
)
|
|
] * loop_amount
|
|
completion_stream = ModelResponseListIterator(model_responses=chunks)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-3.5-turbo",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
print(f"expected_chunk_fail: {expected_chunk_fail}")
|
|
|
|
if (loop_amount > litellm.REPEATED_STREAMING_CHUNK_LIMIT) and expected_chunk_fail:
|
|
with pytest.raises(litellm.InternalServerError):
|
|
for chunk in response:
|
|
continue
|
|
else:
|
|
for chunk in response:
|
|
continue
|
|
|
|
|
|
def test_unit_test_custom_stream_wrapper_openai():
|
|
"""
|
|
Test if last streaming chunk ends with '?', if the message repeats itself.
|
|
"""
|
|
litellm.set_verbose = False
|
|
chunk = {
|
|
"id": "chatcmpl-9mWtyDnikZZoB75DyfUzWUxiiE2Pi",
|
|
"choices": [
|
|
litellm.utils.StreamingChoices(
|
|
delta=litellm.utils.Delta(
|
|
content=None, function_call=None, role=None, tool_calls=None
|
|
),
|
|
finish_reason="content_filter",
|
|
index=0,
|
|
logprobs=None,
|
|
)
|
|
],
|
|
"created": 1721353246,
|
|
"model": "gpt-3.5-turbo",
|
|
"object": "chat.completion.chunk",
|
|
"system_fingerprint": None,
|
|
"usage": None,
|
|
}
|
|
chunk = litellm.ModelResponse(**chunk, stream=True)
|
|
|
|
completion_stream = ModelResponseIterator(model_response=chunk)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-3.5-turbo",
|
|
custom_llm_provider="azure",
|
|
logging_obj=litellm.Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
stream_finish_reason: Optional[str] = None
|
|
for chunk in response:
|
|
assert chunk.choices[0].delta.content is None
|
|
if chunk.choices[0].finish_reason is not None:
|
|
stream_finish_reason = chunk.choices[0].finish_reason
|
|
assert stream_finish_reason == "content_filter"
|
|
|
|
|
|
def test_aamazing_unit_test_custom_stream_wrapper_n():
|
|
"""
|
|
Test if the translated output maps exactly to the received openai input
|
|
|
|
Relevant issue: https://github.com/BerriAI/litellm/issues/3276
|
|
"""
|
|
chunks = [
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": "It"},
|
|
"logprobs": {
|
|
"content": [
|
|
{
|
|
"token": "It",
|
|
"logprob": -1.5952516,
|
|
"bytes": [73, 116],
|
|
"top_logprobs": [
|
|
{
|
|
"token": "Brown",
|
|
"logprob": -0.7358765,
|
|
"bytes": [66, 114, 111, 119, 110],
|
|
}
|
|
],
|
|
}
|
|
]
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 1,
|
|
"delta": {"content": "Brown"},
|
|
"logprobs": {
|
|
"content": [
|
|
{
|
|
"token": "Brown",
|
|
"logprob": -0.7358765,
|
|
"bytes": [66, 114, 111, 119, 110],
|
|
"top_logprobs": [
|
|
{
|
|
"token": "Brown",
|
|
"logprob": -0.7358765,
|
|
"bytes": [66, 114, 111, 119, 110],
|
|
}
|
|
],
|
|
}
|
|
]
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": "'s"},
|
|
"logprobs": {
|
|
"content": [
|
|
{
|
|
"token": "'s",
|
|
"logprob": -0.006786893,
|
|
"bytes": [39, 115],
|
|
"top_logprobs": [
|
|
{
|
|
"token": "'s",
|
|
"logprob": -0.006786893,
|
|
"bytes": [39, 115],
|
|
}
|
|
],
|
|
}
|
|
]
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": " impossible"},
|
|
"logprobs": {
|
|
"content": [
|
|
{
|
|
"token": " impossible",
|
|
"logprob": -0.06528423,
|
|
"bytes": [
|
|
32,
|
|
105,
|
|
109,
|
|
112,
|
|
111,
|
|
115,
|
|
115,
|
|
105,
|
|
98,
|
|
108,
|
|
101,
|
|
],
|
|
"top_logprobs": [
|
|
{
|
|
"token": " impossible",
|
|
"logprob": -0.06528423,
|
|
"bytes": [
|
|
32,
|
|
105,
|
|
109,
|
|
112,
|
|
111,
|
|
115,
|
|
115,
|
|
105,
|
|
98,
|
|
108,
|
|
101,
|
|
],
|
|
}
|
|
],
|
|
}
|
|
]
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"delta": {"content": "—even"},
|
|
"logprobs": {
|
|
"content": [
|
|
{
|
|
"token": "—even",
|
|
"logprob": -9999.0,
|
|
"bytes": [226, 128, 148, 101, 118, 101, 110],
|
|
"top_logprobs": [
|
|
{
|
|
"token": " to",
|
|
"logprob": -0.12302828,
|
|
"bytes": [32, 116, 111],
|
|
}
|
|
],
|
|
}
|
|
]
|
|
},
|
|
"finish_reason": None,
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{"index": 0, "delta": {}, "logprobs": None, "finish_reason": "length"}
|
|
],
|
|
},
|
|
{
|
|
"id": "chatcmpl-9HzZIMCtVq7CbTmdwEZrktiTeoiYe",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1714075272,
|
|
"model": "gpt-4-0613",
|
|
"system_fingerprint": None,
|
|
"choices": [
|
|
{"index": 1, "delta": {}, "logprobs": None, "finish_reason": "stop"}
|
|
],
|
|
},
|
|
]
|
|
|
|
litellm.set_verbose = True
|
|
|
|
chunk_list = []
|
|
for chunk in chunks:
|
|
new_chunk = litellm.ModelResponse(stream=True, id=chunk["id"])
|
|
if "choices" in chunk and isinstance(chunk["choices"], list):
|
|
print("INSIDE CHUNK CHOICES!")
|
|
new_choices = []
|
|
for choice in chunk["choices"]:
|
|
if isinstance(choice, litellm.utils.StreamingChoices):
|
|
_new_choice = choice
|
|
elif isinstance(choice, dict):
|
|
_new_choice = litellm.utils.StreamingChoices(**choice)
|
|
new_choices.append(_new_choice)
|
|
new_chunk.choices = new_choices
|
|
chunk_list.append(new_chunk)
|
|
|
|
completion_stream = ModelResponseListIterator(model_responses=chunk_list)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-4-0613",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.Logging(
|
|
model="gpt-4-0613",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
for idx, chunk in enumerate(response):
|
|
chunk_dict = {}
|
|
try:
|
|
chunk_dict = chunk.model_dump(exclude_none=True)
|
|
except Exception:
|
|
chunk_dict = chunk.dict(exclude_none=True)
|
|
|
|
chunk_dict.pop("created")
|
|
chunks[idx].pop("created")
|
|
if chunks[idx]["system_fingerprint"] is None:
|
|
chunks[idx].pop("system_fingerprint", None)
|
|
if idx == 0:
|
|
for choice in chunk_dict["choices"]:
|
|
if "role" in choice["delta"]:
|
|
choice["delta"].pop("role")
|
|
|
|
for choice in chunks[idx]["choices"]:
|
|
# ignore finish reason None - since our pydantic object is set to exclude_none = true
|
|
if "finish_reason" in choice and choice["finish_reason"] is None:
|
|
choice.pop("finish_reason")
|
|
if "logprobs" in choice and choice["logprobs"] is None:
|
|
choice.pop("logprobs")
|
|
|
|
assert (
|
|
chunk_dict == chunks[idx]
|
|
), f"idx={idx} translated chunk = {chunk_dict} != openai chunk = {chunks[idx]}"
|
|
|
|
|
|
def test_unit_test_custom_stream_wrapper_function_call():
|
|
"""
|
|
Test if model returns a tool call, the finish reason is correctly set to 'tool_calls'
|
|
"""
|
|
from litellm.types.llms.openai import ChatCompletionDeltaChunk
|
|
|
|
litellm.set_verbose = False
|
|
delta: ChatCompletionDeltaChunk = {
|
|
"content": None,
|
|
"role": "assistant",
|
|
"tool_calls": [
|
|
{
|
|
"function": {"arguments": '"}'},
|
|
"type": "function",
|
|
"index": 0,
|
|
}
|
|
],
|
|
}
|
|
chunk = {
|
|
"id": "chatcmpl-123",
|
|
"object": "chat.completion.chunk",
|
|
"created": 1694268190,
|
|
"model": "gpt-3.5-turbo-0125",
|
|
"system_fingerprint": "fp_44709d6fcb",
|
|
"choices": [{"index": 0, "delta": delta, "finish_reason": "stop"}],
|
|
}
|
|
chunk = litellm.ModelResponse(**chunk, stream=True)
|
|
|
|
completion_stream = ModelResponseIterator(model_response=chunk)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-3.5-turbo",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.litellm_core_utils.litellm_logging.Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
finish_reason: Optional[str] = None
|
|
for chunk in response:
|
|
if chunk.choices[0].finish_reason is not None:
|
|
finish_reason = chunk.choices[0].finish_reason
|
|
assert finish_reason == "tool_calls"
|
|
|
|
## UNIT TEST RECREATING MODEL RESPONSE
|
|
from litellm.types.utils import (
|
|
ChatCompletionDeltaToolCall,
|
|
Delta,
|
|
Function,
|
|
StreamingChoices,
|
|
Usage,
|
|
)
|
|
|
|
initial_model_response = litellm.ModelResponse(
|
|
id="chatcmpl-842826b6-75a1-4ed4-8a68-7655e60654b3",
|
|
choices=[
|
|
StreamingChoices(
|
|
finish_reason=None,
|
|
index=0,
|
|
delta=Delta(
|
|
content="",
|
|
role="assistant",
|
|
function_call=None,
|
|
tool_calls=[
|
|
ChatCompletionDeltaToolCall(
|
|
id="7ee88721-bfee-4584-8662-944a23d4c7a5",
|
|
function=Function(
|
|
arguments='{"questions": ["What are the main challenges facing civil engineers today?", "How has technology impacted the field of civil engineering?", "What are some of the most innovative projects in civil engineering in recent years?"]}',
|
|
name="generate_series_of_questions",
|
|
),
|
|
type="function",
|
|
index=0,
|
|
)
|
|
],
|
|
),
|
|
logprobs=None,
|
|
)
|
|
],
|
|
created=1720755257,
|
|
model="gemini-1.5-flash",
|
|
object="chat.completion.chunk",
|
|
system_fingerprint=None,
|
|
usage=Usage(prompt_tokens=67, completion_tokens=55, total_tokens=122),
|
|
stream=True,
|
|
)
|
|
|
|
obj_dict = initial_model_response.dict()
|
|
|
|
if "usage" in obj_dict:
|
|
del obj_dict["usage"]
|
|
|
|
new_model = response.model_response_creator(chunk=obj_dict)
|
|
|
|
print("\n\n{}\n\n".format(new_model))
|
|
|
|
assert len(new_model.choices[0].delta.tool_calls) > 0
|
|
|
|
|
|
def test_unit_test_perplexity_citations_chunk():
|
|
"""
|
|
Test if model returns a tool call, the finish reason is correctly set to 'tool_calls'
|
|
"""
|
|
from litellm.types.llms.openai import ChatCompletionDeltaChunk
|
|
|
|
litellm.set_verbose = False
|
|
delta: ChatCompletionDeltaChunk = {
|
|
"content": "B",
|
|
"role": "assistant",
|
|
}
|
|
chunk = {
|
|
"id": "xxx",
|
|
"model": "llama-3.1-sonar-small-128k-online",
|
|
"created": 1725494279,
|
|
"usage": {"prompt_tokens": 15, "completion_tokens": 1, "total_tokens": 16},
|
|
"citations": [
|
|
"https://x.com/bizzabo?lang=ur",
|
|
"https://apps.apple.com/my/app/bizzabo/id408705047",
|
|
"https://www.bizzabo.com/blog/maximize-event-data-strategies-for-success",
|
|
],
|
|
"object": "chat.completion",
|
|
"choices": [
|
|
{
|
|
"index": 0,
|
|
"finish_reason": None,
|
|
"message": {"role": "assistant", "content": "B"},
|
|
"delta": delta,
|
|
}
|
|
],
|
|
}
|
|
chunk = litellm.ModelResponse(**chunk, stream=True)
|
|
|
|
completion_stream = ModelResponseIterator(model_response=chunk)
|
|
|
|
response = litellm.CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model="gpt-3.5-turbo",
|
|
custom_llm_provider="cached_response",
|
|
logging_obj=litellm.litellm_core_utils.litellm_logging.Logging(
|
|
model="gpt-3.5-turbo",
|
|
messages=[{"role": "user", "content": "Hey"}],
|
|
stream=True,
|
|
call_type="completion",
|
|
start_time=time.time(),
|
|
litellm_call_id="12345",
|
|
function_id="1245",
|
|
),
|
|
)
|
|
|
|
finish_reason: Optional[str] = None
|
|
for response_chunk in response:
|
|
if response_chunk.choices[0].delta.content is not None:
|
|
print(
|
|
f"response_chunk.choices[0].delta.content: {response_chunk.choices[0].delta.content}"
|
|
)
|
|
assert "citations" in response_chunk
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"gpt-3.5-turbo",
|
|
"claude-3-5-sonnet-20240620",
|
|
"anthropic.claude-3-sonnet-20240229-v1:0",
|
|
"vertex_ai/claude-3-5-sonnet@20240620",
|
|
],
|
|
)
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_streaming_tool_calls_valid_json_str(model):
|
|
if "vertex_ai" in model:
|
|
from test_amazing_vertex_completion import (
|
|
load_vertex_ai_credentials,
|
|
)
|
|
|
|
load_vertex_ai_credentials()
|
|
vertex_location = "us-east5"
|
|
else:
|
|
vertex_location = None
|
|
litellm.set_verbose = False
|
|
messages = [
|
|
{"role": "user", "content": "Hit the snooze button."},
|
|
]
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "snooze",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {},
|
|
"required": [],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
stream = litellm.completion(
|
|
model, messages, tools=tools, stream=True, vertex_location=vertex_location
|
|
)
|
|
chunks = [*stream]
|
|
print(f"chunks: {chunks}")
|
|
tool_call_id_arg_map = {}
|
|
curr_tool_call_id = None
|
|
curr_tool_call_str = ""
|
|
for chunk in chunks:
|
|
if chunk.choices[0].delta.tool_calls is not None:
|
|
if chunk.choices[0].delta.tool_calls[0].id is not None:
|
|
# flush prev tool call
|
|
if curr_tool_call_id is not None:
|
|
tool_call_id_arg_map[curr_tool_call_id] = curr_tool_call_str
|
|
curr_tool_call_str = ""
|
|
curr_tool_call_id = chunk.choices[0].delta.tool_calls[0].id
|
|
tool_call_id_arg_map[curr_tool_call_id] = ""
|
|
if chunk.choices[0].delta.tool_calls[0].function.arguments is not None:
|
|
curr_tool_call_str += (
|
|
chunk.choices[0].delta.tool_calls[0].function.arguments
|
|
)
|
|
# flush prev tool call
|
|
if curr_tool_call_id is not None:
|
|
tool_call_id_arg_map[curr_tool_call_id] = curr_tool_call_str
|
|
|
|
for k, v in tool_call_id_arg_map.items():
|
|
print("k={}, v={}".format(k, v))
|
|
json.loads(v) # valid json str
|