litellm/tests/local_testing/test_utils.py
Krish Dholakia 2e5c46ef6d
LiteLLM Minor Fixes & Improvements (10/04/2024) (#6064)
* fix(litellm_logging.py): ensure cache hits are scrubbed if 'turn_off_message_logging' is enabled

* fix(sagemaker.py): fix streaming to raise error immediately

Fixes https://github.com/BerriAI/litellm/issues/6054

* (fixes)  gcs bucket key based logging  (#6044)

* fixes for gcs bucket logging

* fix StandardCallbackDynamicParams

* fix - gcs logging when payload is not serializable

* add test_add_callback_via_key_litellm_pre_call_utils_gcs_bucket

* working success callbacks

* linting fixes

* fix linting error

* add type hints to functions

* fixes for dynamic success and failure logging

* fix for test_async_chat_openai_stream

* fix handle case when key based logging vars are set as os.environ/ vars

* fix prometheus track cooldown events on custom logger (#6060)

* (docs) add 1k rps load test doc  (#6059)

* docs 1k rps load test

* docs load testing

* docs load testing litellm

* docs load testing

* clean up load test doc

* docs prom metrics for load testing

* docs using prometheus on load testing

* doc load testing with prometheus

* (fixes) docs + qa - gcs key based logging  (#6061)

* fixes for required values for gcs bucket

* docs gcs bucket logging

* bump: version 1.48.12 → 1.48.13

* ci/cd run again

* bump: version 1.48.13 → 1.48.14

* update load test doc

* (docs) router settings - on litellm config  (#6037)

* add yaml with all router settings

* add docs for router settings

* docs router settings litellm settings

* (feat)  OpenAI prompt caching models to model cost map (#6063)

* add prompt caching for latest models

* add cache_read_input_token_cost for prompt caching models

* fix(litellm_logging.py): check if param is iterable

Fixes https://github.com/BerriAI/litellm/issues/6025#issuecomment-2393929946

* fix(factory.py): support passing an 'assistant_continue_message' to prevent bedrock error

Fixes https://github.com/BerriAI/litellm/issues/6053

* fix(databricks/chat): handle streaming responses

* fix(factory.py): fix linting error

* fix(utils.py): unify anthropic + deepseek prompt caching information to openai format

Fixes https://github.com/BerriAI/litellm/issues/6069

* test: fix test

* fix(types/utils.py): support all openai roles

Fixes https://github.com/BerriAI/litellm/issues/6052

* test: fix test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
2024-10-04 21:28:53 -04:00

835 lines
26 KiB
Python

import copy
import sys
import time
from datetime import datetime
from unittest import mock
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm.proxy.utils import (
_duration_in_seconds,
_extract_from_regex,
get_last_day_of_month,
)
from litellm.utils import (
check_valid_key,
create_pretrained_tokenizer,
create_tokenizer,
function_to_dict,
get_llm_provider,
get_max_tokens,
get_supported_openai_params,
get_token_count,
get_valid_models,
token_counter,
trim_messages,
validate_environment,
)
# Assuming your trim_messages, shorten_message_to_fit_limit, and get_token_count functions are all in a module named 'message_utils'
# Test 1: Check trimming of normal message
def test_basic_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that definitely exceeds the token limit.",
}
]
trimmed_messages = trim_messages(messages, model="claude-2", max_tokens=8)
print("trimmed messages")
print(trimmed_messages)
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
assert (get_token_count(messages=trimmed_messages, model="claude-2")) <= 8
# test_basic_trimming()
def test_basic_trimming_no_max_tokens_specified():
messages = [
{
"role": "user",
"content": "This is a long message that is definitely under the token limit.",
}
]
trimmed_messages = trim_messages(messages, model="gpt-4")
print("trimmed messages for gpt-4")
print(trimmed_messages)
# print(get_token_count(messages=trimmed_messages, model="claude-2"))
assert (
get_token_count(messages=trimmed_messages, model="gpt-4")
) <= litellm.model_cost["gpt-4"]["max_tokens"]
# test_basic_trimming_no_max_tokens_specified()
def test_multiple_messages_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that will exceed the token limit.",
},
{
"role": "user",
"content": "This is another long message that will also exceed the limit.",
},
]
trimmed_messages = trim_messages(
messages=messages, model="gpt-3.5-turbo", max_tokens=20
)
# print(get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo"))
assert (get_token_count(messages=trimmed_messages, model="gpt-3.5-turbo")) <= 20
# test_multiple_messages_trimming()
def test_multiple_messages_no_trimming():
messages = [
{
"role": "user",
"content": "This is a long message that will exceed the token limit.",
},
{
"role": "user",
"content": "This is another long message that will also exceed the limit.",
},
]
trimmed_messages = trim_messages(
messages=messages, model="gpt-3.5-turbo", max_tokens=100
)
print("Trimmed messages")
print(trimmed_messages)
assert messages == trimmed_messages
# test_multiple_messages_no_trimming()
def test_large_trimming_multiple_messages():
messages = [
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."},
]
trimmed_messages = trim_messages(messages, max_tokens=20, model="gpt-4-0613")
print("trimmed messages")
print(trimmed_messages)
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 20
# test_large_trimming()
def test_large_trimming_single_message():
messages = [
{"role": "user", "content": "This is a singlelongwordthatexceedsthelimit."}
]
trimmed_messages = trim_messages(messages, max_tokens=5, model="gpt-4-0613")
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) <= 5
assert (get_token_count(messages=trimmed_messages, model="gpt-4-0613")) > 0
def test_trimming_with_system_message_within_max_tokens():
# This message is 33 tokens long
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
trimmed_messages = trim_messages(
messages, max_tokens=30, model="gpt-4-0613"
) # The system message should fit within the token limit
assert len(trimmed_messages) == 2
assert trimmed_messages[0]["content"] == "This is a short system message"
def test_trimming_with_system_message_exceeding_max_tokens():
# This message is 33 tokens long. The system message is 13 tokens long.
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
assert len(trimmed_messages) == 1
def test_trimming_with_tool_calls():
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
},
Message(
content=None,
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "San Francisco, CA", "unit": "celsius"}',
name="get_current_weather",
),
id="call_G11shFcS024xEKjiAOSt6Tc9",
type="function",
),
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "Tokyo, Japan", "unit": "celsius"}',
name="get_current_weather",
),
id="call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
type="function",
),
ChatCompletionMessageToolCall(
function=Function(
arguments='{"location": "Paris, France", "unit": "celsius"}',
name="get_current_weather",
),
id="call_nRjLXkWTJU2a4l9PZAf5as6g",
type="function",
),
],
function_call=None,
),
{
"tool_call_id": "call_G11shFcS024xEKjiAOSt6Tc9",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
},
{
"tool_call_id": "call_e0ss43Bg7H8Z9KGdMGWyZ9Mj",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "Tokyo", "temperature": "10", "unit": "celsius"}',
},
{
"tool_call_id": "call_nRjLXkWTJU2a4l9PZAf5as6g",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "Paris", "temperature": "22", "unit": "celsius"}',
},
]
result = trim_messages(messages=messages, max_tokens=1, return_response_tokens=True)
print(result)
assert len(result[0]) == 3 # final 3 messages are tool calls
def test_trimming_should_not_change_original_messages():
messages = [
{"role": "system", "content": "This is a short system message"},
{
"role": "user",
"content": "This is a medium normal message, let's say litellm is awesome.",
},
]
messages_copy = copy.deepcopy(messages)
trimmed_messages = trim_messages(messages, max_tokens=12, model="gpt-4-0613")
assert messages == messages_copy
@pytest.mark.parametrize("model", ["gpt-4-0125-preview", "claude-3-opus-20240229"])
def test_trimming_with_model_cost_max_input_tokens(model):
messages = [
{"role": "system", "content": "This is a normal system message"},
{
"role": "user",
"content": "This is a sentence" * 100000,
},
]
trimmed_messages = trim_messages(messages, model=model)
assert (
get_token_count(trimmed_messages, model=model)
< litellm.model_cost[model]["max_input_tokens"]
)
def test_aget_valid_models():
old_environ = os.environ
os.environ = {"OPENAI_API_KEY": "temp"} # mock set only openai key in environ
valid_models = get_valid_models()
print(valid_models)
# list of openai supported llms on litellm
expected_models = (
litellm.open_ai_chat_completion_models + litellm.open_ai_text_completion_models
)
assert valid_models == expected_models
# reset replicate env key
os.environ = old_environ
# GEMINI
expected_models = litellm.gemini_models
old_environ = os.environ
os.environ = {"GEMINI_API_KEY": "temp"} # mock set only openai key in environ
valid_models = get_valid_models()
print(valid_models)
assert valid_models == expected_models
# reset replicate env key
os.environ = old_environ
# test_get_valid_models()
def test_bad_key():
key = "bad-key"
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
print(response, key)
assert response == False
def test_good_key():
key = os.environ["OPENAI_API_KEY"]
response = check_valid_key(model="gpt-3.5-turbo", api_key=key)
assert response == True
# test validate environment
def test_validate_environment_empty_model():
api_key = validate_environment()
if api_key is None:
raise Exception()
def test_validate_environment_api_key():
response_obj = validate_environment(model="gpt-3.5-turbo", api_key="sk-my-test-key")
assert (
response_obj["keys_in_environment"] is True
), f"Missing keys={response_obj['missing_keys']}"
@mock.patch.dict(os.environ, {"OLLAMA_API_BASE": "foo"}, clear=True)
def test_validate_environment_ollama():
for provider in ["ollama", "ollama_chat"]:
kv = validate_environment(provider + "/mistral")
assert kv["keys_in_environment"]
assert kv["missing_keys"] == []
@mock.patch.dict(os.environ, {}, clear=True)
def test_validate_environment_ollama_failed():
for provider in ["ollama", "ollama_chat"]:
kv = validate_environment(provider + "/mistral")
assert not kv["keys_in_environment"]
assert kv["missing_keys"] == ["OLLAMA_API_BASE"]
def test_function_to_dict():
print("testing function to dict for get current weather")
def get_current_weather(location: str, unit: str):
"""Get the current weather in a given location
Parameters
----------
location : str
The city and state, e.g. San Francisco, CA
unit : {'celsius', 'fahrenheit'}
Temperature unit
Returns
-------
str
a sentence indicating the weather
"""
if location == "Boston, MA":
return "The weather is 12F"
function_json = litellm.utils.function_to_dict(get_current_weather)
print(function_json)
expected_output = {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"description": "Temperature unit",
"enum": "['fahrenheit', 'celsius']",
},
},
"required": ["location", "unit"],
},
}
print(expected_output)
assert function_json["name"] == expected_output["name"]
assert function_json["description"] == expected_output["description"]
assert function_json["parameters"]["type"] == expected_output["parameters"]["type"]
assert (
function_json["parameters"]["properties"]["location"]
== expected_output["parameters"]["properties"]["location"]
)
# the enum can change it can be - which is why we don't assert on unit
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['fahrenheit', 'celsius']"}
# {'type': 'string', 'description': 'Temperature unit', 'enum': "['celsius', 'fahrenheit']"}
assert (
function_json["parameters"]["required"]
== expected_output["parameters"]["required"]
)
print("passed")
# test_function_to_dict()
def test_token_counter():
try:
messages = [{"role": "user", "content": "hi how are you what time is it"}]
tokens = token_counter(model="gpt-3.5-turbo", messages=messages)
print("gpt-35-turbo")
print(tokens)
assert tokens > 0
tokens = token_counter(model="claude-2", messages=messages)
print("claude-2")
print(tokens)
assert tokens > 0
tokens = token_counter(model="palm/chat-bison", messages=messages)
print("palm/chat-bison")
print(tokens)
assert tokens > 0
tokens = token_counter(model="ollama/llama2", messages=messages)
print("ollama/llama2")
print(tokens)
assert tokens > 0
tokens = token_counter(model="anthropic.claude-instant-v1", messages=messages)
print("anthropic.claude-instant-v1")
print(tokens)
assert tokens > 0
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_token_counter()
def test_supports_function_calling():
try:
assert litellm.supports_function_calling(model="gpt-3.5-turbo") == True
assert (
litellm.supports_function_calling(model="azure/gpt-4-1106-preview") == True
)
assert litellm.supports_function_calling(model="groq/gemma-7b-it") == True
assert (
litellm.supports_function_calling(model="anthropic.claude-instant-v1")
== False
)
assert litellm.supports_function_calling(model="palm/chat-bison") == False
assert litellm.supports_function_calling(model="ollama/llama2") == False
assert (
litellm.supports_function_calling(model="anthropic.claude-instant-v1")
== False
)
assert litellm.supports_function_calling(model="claude-2") == False
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_get_max_token_unit_test():
"""
More complete testing in `test_completion_cost.py`
"""
model = "bedrock/anthropic.claude-3-haiku-20240307-v1:0"
max_tokens = get_max_tokens(
model
) # Returns a number instead of throwing an Exception
assert isinstance(max_tokens, int)
def test_get_supported_openai_params() -> None:
# Mapped provider
assert isinstance(get_supported_openai_params("gpt-4"), list)
# Unmapped provider
assert get_supported_openai_params("nonexistent") is None
def test_redact_msgs_from_logs():
"""
Tests that turn_off_message_logging does not modify the response_obj
On the proxy some users were seeing the redaction impact client side responses
"""
from litellm.litellm_core_utils.litellm_logging import Logging
from litellm.litellm_core_utils.redact_messages import (
redact_message_input_output_from_logging,
)
litellm.turn_off_message_logging = True
response_obj = litellm.ModelResponse(
choices=[
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner.",
"role": "assistant",
},
}
]
)
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id="1234",
start_time=datetime.now(),
function_id="1234",
)
_redacted_response_obj = redact_message_input_output_from_logging(
result=response_obj,
model_call_details=litellm_logging_obj.model_call_details,
)
# Assert the response_obj content is NOT modified
assert (
response_obj.choices[0].message.content
== "I'm LLaMA, an AI assistant developed by Meta AI that can understand and respond to human input in a conversational manner."
)
litellm.turn_off_message_logging = False
print("Test passed")
@pytest.mark.parametrize(
"duration, unit",
[("7s", "s"), ("7m", "m"), ("7h", "h"), ("7d", "d"), ("7mo", "mo")],
)
def test_extract_from_regex(duration, unit):
value, _unit = _extract_from_regex(duration=duration)
assert value == 7
assert _unit == unit
def test_duration_in_seconds():
"""
Test if duration int is correctly calculated for different str
"""
import time
now = time.time()
current_time = datetime.fromtimestamp(now)
if current_time.month == 12:
target_year = current_time.year + 1
target_month = 1
else:
target_year = current_time.year
target_month = current_time.month + 1
# Determine the day to set for next month
target_day = current_time.day
last_day_of_target_month = get_last_day_of_month(target_year, target_month)
if target_day > last_day_of_target_month:
target_day = last_day_of_target_month
next_month = datetime(
year=target_year,
month=target_month,
day=target_day,
hour=current_time.hour,
minute=current_time.minute,
second=current_time.second,
microsecond=current_time.microsecond,
)
# Calculate the duration until the first day of the next month
duration_until_next_month = next_month - current_time
expected_duration = int(duration_until_next_month.total_seconds())
value = _duration_in_seconds(duration="1mo")
assert value - expected_duration < 2
def test_get_llm_provider_ft_models():
"""
All ft prefixed models should map to OpenAI
gpt-3.5-turbo-0125 (recommended),
gpt-3.5-turbo-1106,
gpt-3.5-turbo,
gpt-4-0613 (experimental)
gpt-4o-2024-05-13.
babbage-002, davinci-002,
"""
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-0125")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo-1106")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4-0613")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-3.5-turbo")
assert custom_llm_provider == "openai"
model, custom_llm_provider, _, _ = get_llm_provider(model="ft:gpt-4o-2024-05-13")
assert custom_llm_provider == "openai"
@pytest.mark.parametrize("langfuse_trace_id", [None, "my-unique-trace-id"])
@pytest.mark.parametrize(
"langfuse_existing_trace_id", [None, "my-unique-existing-trace-id"]
)
def test_logging_trace_id(langfuse_trace_id, langfuse_existing_trace_id):
"""
- Unit test for `_get_trace_id` function in Logging obj
"""
from litellm.litellm_core_utils.litellm_logging import Logging
litellm.success_callback = ["langfuse"]
litellm_call_id = "my-unique-call-id"
litellm_logging_obj = Logging(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "hi"}],
stream=False,
call_type="acompletion",
litellm_call_id=litellm_call_id,
start_time=datetime.now(),
function_id="1234",
)
metadata = {}
if langfuse_trace_id is not None:
metadata["trace_id"] = langfuse_trace_id
if langfuse_existing_trace_id is not None:
metadata["existing_trace_id"] = langfuse_existing_trace_id
litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hey how's it going?"}],
mock_response="Hey!",
litellm_logging_obj=litellm_logging_obj,
metadata=metadata,
)
time.sleep(3)
assert litellm_logging_obj._get_trace_id(service_name="langfuse") is not None
## if existing_trace_id exists
if langfuse_existing_trace_id is not None:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== langfuse_existing_trace_id
)
## if trace_id exists
elif langfuse_trace_id is not None:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== langfuse_trace_id
)
## if existing_trace_id exists
else:
assert (
litellm_logging_obj._get_trace_id(service_name="langfuse")
== litellm_call_id
)
def test_convert_model_response_object():
"""
Unit test to ensure model response object correctly handles openrouter errors.
"""
args = {
"response_object": {
"id": None,
"choices": None,
"created": None,
"model": None,
"object": None,
"service_tier": None,
"system_fingerprint": None,
"usage": None,
"error": {
"message": '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}',
"code": 400,
},
},
"model_response_object": litellm.ModelResponse(
id="chatcmpl-b88ce43a-7bfc-437c-b8cc-e90d59372cfb",
choices=[
litellm.Choices(
finish_reason="stop",
index=0,
message=litellm.Message(content="default", role="assistant"),
)
],
created=1719376241,
model="openrouter/anthropic/claude-3.5-sonnet",
object="chat.completion",
system_fingerprint=None,
usage=litellm.Usage(),
),
"response_type": "completion",
"stream": False,
"start_time": None,
"end_time": None,
"hidden_params": None,
}
try:
litellm.convert_to_model_response_object(**args)
pytest.fail("Expected this to fail")
except Exception as e:
assert hasattr(e, "status_code")
assert e.status_code == 400
assert hasattr(e, "message")
assert (
e.message
== '{"type":"error","error":{"type":"invalid_request_error","message":"Output blocked by content filtering policy"}}'
)
@pytest.mark.parametrize(
"model, expected_bool",
[
("vertex_ai/gemini-1.5-pro", True),
("gemini/gemini-1.5-pro", True),
("predibase/llama3-8b-instruct", True),
("gpt-4o", False),
],
)
def test_supports_response_schema(model, expected_bool):
"""
Unit tests for 'supports_response_schema' helper function.
Should be true for gemini-1.5-pro on google ai studio / vertex ai AND predibase models
Should be false otherwise
"""
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
from litellm.utils import supports_response_schema
response = supports_response_schema(model=model, custom_llm_provider=None)
assert expected_bool == response
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-3.5-turbo", True),
("gpt-4", True),
("command-nightly", False),
("gemini-pro", True),
],
)
def test_supports_function_calling_v2(model, expected_bool):
"""
Unit test for 'supports_function_calling' helper function.
"""
from litellm.utils import supports_function_calling
response = supports_function_calling(model=model, custom_llm_provider=None)
assert expected_bool == response
@pytest.mark.parametrize(
"model, expected_bool",
[
("gpt-4-vision-preview", True),
("gpt-3.5-turbo", False),
("claude-3-opus-20240229", True),
("gemini-pro-vision", True),
("command-nightly", False),
],
)
def test_supports_vision(model, expected_bool):
"""
Unit test for 'supports_vision' helper function.
"""
from litellm.utils import supports_vision
response = supports_vision(model=model, custom_llm_provider=None)
assert expected_bool == response
def test_usage_object_null_tokens():
"""
Unit test.
Asserts Usage obj always returns int.
Fixes https://github.com/BerriAI/litellm/issues/5096
"""
usage_obj = litellm.Usage(prompt_tokens=2, completion_tokens=None, total_tokens=2)
assert usage_obj.completion_tokens == 0
def test_is_base64_encoded():
import base64
import requests
litellm.set_verbose = True
url = "https://dummyimage.com/100/100/fff&text=Test+image"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
base64_image = f"data:image/png;base64,{encoded_file}"
from litellm.utils import is_base64_encoded
assert is_base64_encoded(s=base64_image) is True