LiteLLM fork
Find a file
Emerson Gomes d0d29d70de
Update several Azure AI models in model cost map (#6655)
* Adding Azure Phi 3/3.5 models to model cost map

* Update gpt-4o-mini models

* Adding missing Azure Mistral models to model cost map

* Adding Azure Llama3.2 models to model cost map

* Fix Gemini-1.5-flash pricing

* Fix Gemini-1.5-flash output pricing

* Fix Gemini-1.5-pro prices

* Fix Gemini-1.5-flash output prices

* Correct gemini-1.5-pro prices

* Correction on Vertex Llama3.2 entry

---------

Co-authored-by: Emerson Gomes <emerson.gomes@thalesgroup.com>
2024-11-08 10:41:14 +05:30
.circleci (QOL improvement) add unit testing for all static_methods in litellm_logging.py (#6640) 2024-11-07 16:26:53 -08:00
.devcontainer LiteLLM Minor Fixes and Improvements (08/06/2024) (#5567) 2024-09-06 17:16:24 -07:00
.github ci: remove redundant lint.yml workflow (#6622) 2024-11-07 01:05:58 +05:30
ci_cd (clean up) move docker files from root to docker folder (#6109) 2024-10-08 08:23:52 +05:30
cookbook (refactor) remove berrispendLogger - unused logging integration (#6363) 2024-10-22 16:53:25 +05:30
db_scripts (DB fix) don't run apply_db_fixes on startup (#6604) 2024-11-05 13:43:08 -08:00
deploy allow configuring httpx hooks for AsyncHTTPHandler (#6290) (#6415) 2024-10-24 22:00:24 -07:00
docker (fix) clean up root repo - move entrypoint.sh and build_admin_ui to /docker (#6110) 2024-10-08 11:34:43 +05:30
docs/my-website (feat) Allow failed DB connection requests to allow virtual keys with allow_failed_db_requests (#6605) 2024-11-06 20:04:41 -08:00
enterprise (refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208) 2024-10-14 16:34:01 +05:30
litellm (feat) log error class, function_name on prometheus service failure hook + only log DB related failures on DB service hook (#6650) 2024-11-07 17:01:18 -08:00
litellm-js Bump hono from 4.5.8 to 4.6.5 in /litellm-js/spend-logs (#6245) 2024-10-16 10:37:31 +05:30
tests (feat) log error class, function_name on prometheus service failure hook + only log DB related failures on DB service hook (#6650) 2024-11-07 17:01:18 -08:00
ui ui new build 2024-10-30 23:53:14 +05:30
.dockerignore Update the dockerignore to minimise the amount of data transfered to the docker context (#5863) 2024-09-24 07:16:17 -07:00
.env.example feat: added support for OPENAI_API_BASE 2023-08-28 14:57:34 +02:00
.flake8 chore: list all ignored flake8 rules explicit 2023-12-23 09:07:59 +01:00
.git-blame-ignore-revs Add my commit to .git-blame-ignore-revs 2024-05-12 10:21:10 -07:00
.gitattributes ignore ipynbs 2023-08-31 16:58:54 -07:00
.gitignore LiteLLM Minor Fixes & Improvements (10/30/2024) (#6519) 2024-11-02 00:44:32 +05:30
.pre-commit-config.yaml (refactor router.py ) - PR 3 - Ensure all functions under 100 lines (#6181) 2024-10-14 21:27:54 +05:30
codecov.yaml fix comment 2024-10-23 15:44:27 +05:30
docker-compose.yml LiteLLM Minor Fixes & Improvements (09/18/2024) (#5772) 2024-09-19 13:25:29 -07:00
Dockerfile (fix) clean up root repo - move entrypoint.sh and build_admin_ui to /docker (#6110) 2024-10-08 11:34:43 +05:30
index.yaml add 0.2.3 helm 2024-08-19 23:59:58 +08:00
LICENSE refactor: creating enterprise folder 2024-02-15 12:54:13 -08:00
model_prices_and_context_window.json Update several Azure AI models in model cost map (#6655) 2024-11-08 10:41:14 +05:30
mypy.ini ci(mypy.ini): ignore missing imports 2024-04-04 10:19:13 -07:00
package-lock.json LiteLLM Minor Fixes & Improvements (09/25/2024) (#5893) 2024-09-26 16:41:44 -07:00
package.json LiteLLM Minor Fixes & Improvements (09/25/2024) (#5893) 2024-09-26 16:41:44 -07:00
poetry.lock (feat) add Predicted Outputs for OpenAI (#6594) 2024-11-04 21:16:57 -08:00
prometheus.yml build(docker-compose.yml): add prometheus scraper to docker compose 2024-07-24 10:09:23 -07:00
proxy_server_config.yaml LiteLLM Minor Fixes and Improvements (09/07/2024) (#5580) 2024-09-09 18:54:17 -07:00
pyproject.toml bump: version 1.52.0 → 1.52.1 2024-11-07 04:45:06 +05:30
pyrightconfig.json Add pyright to ci/cd + Fix remaining type-checking errors (#6082) 2024-10-05 17:04:00 -04:00
README.md docs readme 2024-08-08 17:06:29 -07:00
render.yaml build(render.yaml): fix health check route 2024-05-24 09:45:28 -07:00
requirements.txt (feat) add Predicted Outputs for OpenAI (#6594) 2024-11-04 21:16:57 -08:00
ruff.toml (code quality) add ruff check PLR0915 for too-many-statements (#6309) 2024-10-18 15:36:49 +05:30
schema.prisma track created, updated at virtual keys 2024-10-25 07:19:29 +04:00
security.md docs(security.md): Adds security.md file to project root 2024-09-02 07:41:29 -07:00

🚅 LiteLLM

Deploy to Render Deploy on Railway

Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]

LiteLLM Proxy Server (LLM Gateway) | Hosted Proxy (Preview) | Enterprise Tier

PyPI Version CircleCI Y Combinator W23 Whatsapp Discord

LiteLLM manages:

  • Translate inputs to provider's completion, embedding, and image_generation endpoints
  • Consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Retry/fallback logic across multiple deployments (e.g. Azure/OpenAI) - Router
  • Set Budgets & Rate limits per project, api key, model LiteLLM Proxy Server (LLM Gateway)

Jump to LiteLLM Proxy (LLM Gateway) Docs
Jump to Supported LLM Providers

🚨 Stable Release: Use docker images with the -stable tag. These have undergone 12 hour load tests, before being published.

Support for more providers. Missing a provider or LLM Platform, raise a feature request.

Usage (Docs)

Important

LiteLLM v1.0.0 now requires openai>=1.0.0. Migration guide here
LiteLLM v1.40.14+ now requires pydantic>=2.0.0. No changes required.

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables
os.environ["OPENAI_API_KEY"] = "your-openai-key"
os.environ["COHERE_API_KEY"] = "your-cohere-key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Call any model supported by a provider, with model=<provider_name>/<model_name>. There might be provider-specific details here, so refer to provider docs for more information

Async (Docs)

from litellm import acompletion
import asyncio

async def test_get_response():
    user_message = "Hello, how are you?"
    messages = [{"content": user_message, "role": "user"}]
    response = await acompletion(model="gpt-3.5-turbo", messages=messages)
    return response

response = asyncio.run(test_get_response())
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.
Streaming is supported for all models (Bedrock, Huggingface, TogetherAI, Azure, OpenAI, etc.)

from litellm import completion
response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

# claude 2
response = completion('claude-2', messages, stream=True)
for part in response:
    print(part.choices[0].delta.content or "")

Logging Observability (Docs)

LiteLLM exposes pre defined callbacks to send data to Lunary, Langfuse, DynamoDB, s3 Buckets, Helicone, Promptlayer, Traceloop, Athina, Slack

from litellm import completion

## set env variables for logging tools
os.environ["LUNARY_PUBLIC_KEY"] = "your-lunary-public-key"
os.environ["HELICONE_API_KEY"] = "your-helicone-auth-key"
os.environ["LANGFUSE_PUBLIC_KEY"] = ""
os.environ["LANGFUSE_SECRET_KEY"] = ""
os.environ["ATHINA_API_KEY"] = "your-athina-api-key"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["lunary", "langfuse", "athina", "helicone"] # log input/output to lunary, langfuse, supabase, athina, helicone etc

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi 👋 - i'm openai"}])

LiteLLM Proxy Server (LLM Gateway) - (Docs)

Track spend + Load Balance across multiple projects

Hosted Proxy (Preview)

The proxy provides:

  1. Hooks for auth
  2. Hooks for logging
  3. Cost tracking
  4. Rate Limiting

📖 Proxy Endpoints - Swagger Docs

Quick Start Proxy - CLI

pip install 'litellm[proxy]'

Step 1: Start litellm proxy

$ litellm --model huggingface/bigcode/starcoder

#INFO: Proxy running on http://0.0.0.0:4000

Step 2: Make ChatCompletions Request to Proxy

Important

💡 Use LiteLLM Proxy with Langchain (Python, JS), OpenAI SDK (Python, JS) Anthropic SDK, Mistral SDK, LlamaIndex, Instructor, Curl

import openai # openai v1.0.0+
client = openai.OpenAI(api_key="anything",base_url="http://0.0.0.0:4000") # set proxy to base_url
# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(model="gpt-3.5-turbo", messages = [
    {
        "role": "user",
        "content": "this is a test request, write a short poem"
    }
])

print(response)

Proxy Key Management (Docs)

Connect the proxy with a Postgres DB to create proxy keys

# Get the code
git clone https://github.com/BerriAI/litellm

# Go to folder
cd litellm

# Add the master key - you can change this after setup
echo 'LITELLM_MASTER_KEY="sk-1234"' > .env

# Add the litellm salt key - you cannot change this after adding a model
# It is used to encrypt / decrypt your LLM API Key credentials
# We recommned - https://1password.com/password-generator/ 
# password generator to get a random hash for litellm salt key
echo 'LITELLM_SALT_KEY="sk-1234"' > .env

source .env

# Start
docker-compose up

UI on /ui on your proxy server ui_3

Set budgets and rate limits across multiple projects POST /key/generate

Request

curl 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data-raw '{"models": ["gpt-3.5-turbo", "gpt-4", "claude-2"], "duration": "20m","metadata": {"user": "ishaan@berri.ai", "team": "core-infra"}}'

Expected Response

{
    "key": "sk-kdEXbIqZRwEeEiHwdg7sFA", # Bearer token
    "expires": "2023-11-19T01:38:25.838000+00:00" # datetime object
}

Supported Providers (Docs)

Provider Completion Streaming Async Completion Async Streaming Async Embedding Async Image Generation
openai
azure
aws - sagemaker
aws - bedrock
google - vertex_ai
google - palm
google AI Studio - gemini
mistral ai api
cloudflare AI Workers
cohere
anthropic
empower
huggingface
replicate
together_ai
openrouter
ai21
baseten
vllm
nlp_cloud
aleph alpha
petals
ollama
deepinfra
perplexity-ai
Groq AI
Deepseek
anyscale
IBM - watsonx.ai
voyage ai
xinference [Xorbits Inference]
FriendliAI

Read the Docs

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install -E extra_proxy -E proxy

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
poetry run flake8
poetry run pytest .

Step 4: Submit a PR with your changes! 🚀

  • push your fork to your GitHub repo
  • submit a PR from there

Enterprise

For companies that need better security, user management and professional support

Talk to founders

This covers:

  • Features under the LiteLLM Commercial License:
  • Feature Prioritization
  • Custom Integrations
  • Professional Support - Dedicated discord + slack
  • Custom SLAs
  • Secure access with Single Sign-On

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors