forked from phoenix/litellm-mirror
* use /user/list endpoint on admin ui * sso insert user with role when user does not exist * add sso sign in test * linting fix * rename self serve doc * add doc for self serve flow * test - sso sign in default values * add test for /user/list endpoint
1038 lines
35 KiB
Python
1038 lines
35 KiB
Python
### Hide pydantic namespace conflict warnings globally ###
|
|
import warnings
|
|
|
|
warnings.filterwarnings("ignore", message=".*conflict with protected namespace.*")
|
|
### INIT VARIABLES ###
|
|
import threading, requests, os
|
|
from typing import Callable, List, Optional, Dict, Union, Any, Literal, get_args
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
from litellm.caching import Cache
|
|
from litellm._logging import (
|
|
set_verbose,
|
|
_turn_on_debug,
|
|
verbose_logger,
|
|
json_logs,
|
|
_turn_on_json,
|
|
log_level,
|
|
)
|
|
|
|
from litellm.types.guardrails import GuardrailItem
|
|
from litellm.proxy._types import (
|
|
KeyManagementSystem,
|
|
KeyManagementSettings,
|
|
LiteLLM_UpperboundKeyGenerateParams,
|
|
)
|
|
import httpx
|
|
import dotenv
|
|
from enum import Enum
|
|
|
|
litellm_mode = os.getenv("LITELLM_MODE", "DEV") # "PRODUCTION", "DEV"
|
|
if litellm_mode == "DEV":
|
|
dotenv.load_dotenv()
|
|
#############################################
|
|
if set_verbose == True:
|
|
_turn_on_debug()
|
|
#############################################
|
|
### Callbacks /Logging / Success / Failure Handlers ###
|
|
input_callback: List[Union[str, Callable]] = []
|
|
success_callback: List[Union[str, Callable]] = []
|
|
failure_callback: List[Union[str, Callable]] = []
|
|
service_callback: List[Union[str, Callable]] = []
|
|
_custom_logger_compatible_callbacks_literal = Literal[
|
|
"lago",
|
|
"openmeter",
|
|
"logfire",
|
|
"dynamic_rate_limiter",
|
|
"langsmith",
|
|
"prometheus",
|
|
"datadog",
|
|
"galileo",
|
|
"braintrust",
|
|
"arize",
|
|
"gcs_bucket",
|
|
]
|
|
_known_custom_logger_compatible_callbacks: List = list(
|
|
get_args(_custom_logger_compatible_callbacks_literal)
|
|
)
|
|
callbacks: List[Union[Callable, _custom_logger_compatible_callbacks_literal]] = []
|
|
langfuse_default_tags: Optional[List[str]] = None
|
|
langsmith_batch_size: Optional[int] = None
|
|
_async_input_callback: List[Callable] = (
|
|
[]
|
|
) # internal variable - async custom callbacks are routed here.
|
|
_async_success_callback: List[Union[str, Callable]] = (
|
|
[]
|
|
) # internal variable - async custom callbacks are routed here.
|
|
_async_failure_callback: List[Callable] = (
|
|
[]
|
|
) # internal variable - async custom callbacks are routed here.
|
|
pre_call_rules: List[Callable] = []
|
|
post_call_rules: List[Callable] = []
|
|
turn_off_message_logging: Optional[bool] = False
|
|
log_raw_request_response: bool = False
|
|
redact_messages_in_exceptions: Optional[bool] = False
|
|
redact_user_api_key_info: Optional[bool] = False
|
|
store_audit_logs = False # Enterprise feature, allow users to see audit logs
|
|
## end of callbacks #############
|
|
|
|
email: Optional[str] = (
|
|
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
|
)
|
|
token: Optional[str] = (
|
|
None # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
|
)
|
|
telemetry = True
|
|
max_tokens = 256 # OpenAI Defaults
|
|
drop_params = bool(os.getenv("LITELLM_DROP_PARAMS", False))
|
|
modify_params = False
|
|
retry = True
|
|
### AUTH ###
|
|
api_key: Optional[str] = None
|
|
openai_key: Optional[str] = None
|
|
databricks_key: Optional[str] = None
|
|
azure_key: Optional[str] = None
|
|
anthropic_key: Optional[str] = None
|
|
replicate_key: Optional[str] = None
|
|
cohere_key: Optional[str] = None
|
|
clarifai_key: Optional[str] = None
|
|
maritalk_key: Optional[str] = None
|
|
ai21_key: Optional[str] = None
|
|
ollama_key: Optional[str] = None
|
|
openrouter_key: Optional[str] = None
|
|
predibase_key: Optional[str] = None
|
|
huggingface_key: Optional[str] = None
|
|
vertex_project: Optional[str] = None
|
|
vertex_location: Optional[str] = None
|
|
predibase_tenant_id: Optional[str] = None
|
|
togetherai_api_key: Optional[str] = None
|
|
cloudflare_api_key: Optional[str] = None
|
|
baseten_key: Optional[str] = None
|
|
aleph_alpha_key: Optional[str] = None
|
|
nlp_cloud_key: Optional[str] = None
|
|
common_cloud_provider_auth_params: dict = {
|
|
"params": ["project", "region_name", "token"],
|
|
"providers": ["vertex_ai", "bedrock", "watsonx", "azure", "vertex_ai_beta"],
|
|
}
|
|
use_client: bool = False
|
|
ssl_verify: Union[str, bool] = True
|
|
ssl_certificate: Optional[str] = None
|
|
disable_streaming_logging: bool = False
|
|
in_memory_llm_clients_cache: dict = {}
|
|
safe_memory_mode: bool = False
|
|
enable_azure_ad_token_refresh: Optional[bool] = False
|
|
### DEFAULT AZURE API VERSION ###
|
|
AZURE_DEFAULT_API_VERSION = "2024-08-01-preview" # this is updated to the latest
|
|
### COHERE EMBEDDINGS DEFAULT TYPE ###
|
|
COHERE_DEFAULT_EMBEDDING_INPUT_TYPE = "search_document"
|
|
### GUARDRAILS ###
|
|
llamaguard_model_name: Optional[str] = None
|
|
openai_moderations_model_name: Optional[str] = None
|
|
presidio_ad_hoc_recognizers: Optional[str] = None
|
|
google_moderation_confidence_threshold: Optional[float] = None
|
|
llamaguard_unsafe_content_categories: Optional[str] = None
|
|
blocked_user_list: Optional[Union[str, List]] = None
|
|
banned_keywords_list: Optional[Union[str, List]] = None
|
|
llm_guard_mode: Literal["all", "key-specific", "request-specific"] = "all"
|
|
guardrail_name_config_map: Dict[str, GuardrailItem] = {}
|
|
##################
|
|
### PREVIEW FEATURES ###
|
|
enable_preview_features: bool = False
|
|
return_response_headers: bool = (
|
|
False # get response headers from LLM Api providers - example x-remaining-requests,
|
|
)
|
|
enable_json_schema_validation: bool = False
|
|
##################
|
|
logging: bool = True
|
|
enable_loadbalancing_on_batch_endpoints: Optional[bool] = None
|
|
enable_caching_on_provider_specific_optional_params: bool = (
|
|
False # feature-flag for caching on optional params - e.g. 'top_k'
|
|
)
|
|
caching: bool = (
|
|
False # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
|
)
|
|
always_read_redis: bool = (
|
|
True # always use redis for rate limiting logic on litellm proxy
|
|
)
|
|
caching_with_models: bool = (
|
|
False # # Not used anymore, will be removed in next MAJOR release - https://github.com/BerriAI/litellm/discussions/648
|
|
)
|
|
cache: Optional[Cache] = (
|
|
None # cache object <- use this - https://docs.litellm.ai/docs/caching
|
|
)
|
|
default_in_memory_ttl: Optional[float] = None
|
|
default_redis_ttl: Optional[float] = None
|
|
model_alias_map: Dict[str, str] = {}
|
|
model_group_alias_map: Dict[str, str] = {}
|
|
max_budget: float = 0.0 # set the max budget across all providers
|
|
budget_duration: Optional[str] = (
|
|
None # proxy only - resets budget after fixed duration. You can set duration as seconds ("30s"), minutes ("30m"), hours ("30h"), days ("30d").
|
|
)
|
|
default_soft_budget: float = (
|
|
50.0 # by default all litellm proxy keys have a soft budget of 50.0
|
|
)
|
|
forward_traceparent_to_llm_provider: bool = False
|
|
_openai_finish_reasons = ["stop", "length", "function_call", "content_filter", "null"]
|
|
_openai_completion_params = [
|
|
"functions",
|
|
"function_call",
|
|
"temperature",
|
|
"temperature",
|
|
"top_p",
|
|
"n",
|
|
"stream",
|
|
"stop",
|
|
"max_tokens",
|
|
"presence_penalty",
|
|
"frequency_penalty",
|
|
"logit_bias",
|
|
"user",
|
|
"request_timeout",
|
|
"api_base",
|
|
"api_version",
|
|
"api_key",
|
|
"deployment_id",
|
|
"organization",
|
|
"base_url",
|
|
"default_headers",
|
|
"timeout",
|
|
"response_format",
|
|
"seed",
|
|
"tools",
|
|
"tool_choice",
|
|
"max_retries",
|
|
]
|
|
_litellm_completion_params = [
|
|
"metadata",
|
|
"acompletion",
|
|
"caching",
|
|
"mock_response",
|
|
"api_key",
|
|
"api_version",
|
|
"api_base",
|
|
"force_timeout",
|
|
"logger_fn",
|
|
"verbose",
|
|
"custom_llm_provider",
|
|
"litellm_logging_obj",
|
|
"litellm_call_id",
|
|
"use_client",
|
|
"id",
|
|
"fallbacks",
|
|
"azure",
|
|
"headers",
|
|
"model_list",
|
|
"num_retries",
|
|
"context_window_fallback_dict",
|
|
"roles",
|
|
"final_prompt_value",
|
|
"bos_token",
|
|
"eos_token",
|
|
"request_timeout",
|
|
"complete_response",
|
|
"self",
|
|
"client",
|
|
"rpm",
|
|
"tpm",
|
|
"input_cost_per_token",
|
|
"output_cost_per_token",
|
|
"hf_model_name",
|
|
"model_info",
|
|
"proxy_server_request",
|
|
"preset_cache_key",
|
|
]
|
|
_current_cost = 0 # private variable, used if max budget is set
|
|
error_logs: Dict = {}
|
|
add_function_to_prompt: bool = (
|
|
False # if function calling not supported by api, append function call details to system prompt
|
|
)
|
|
client_session: Optional[httpx.Client] = None
|
|
aclient_session: Optional[httpx.AsyncClient] = None
|
|
model_fallbacks: Optional[List] = None # Deprecated for 'litellm.fallbacks'
|
|
model_cost_map_url: str = (
|
|
"https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
|
|
)
|
|
suppress_debug_info = False
|
|
dynamodb_table_name: Optional[str] = None
|
|
s3_callback_params: Optional[Dict] = None
|
|
generic_logger_headers: Optional[Dict] = None
|
|
default_key_generate_params: Optional[Dict] = None
|
|
upperbound_key_generate_params: Optional[LiteLLM_UpperboundKeyGenerateParams] = None
|
|
default_internal_user_params: Optional[Dict] = None
|
|
default_team_settings: Optional[List] = None
|
|
max_user_budget: Optional[float] = None
|
|
default_max_internal_user_budget: Optional[float] = None
|
|
max_internal_user_budget: Optional[float] = None
|
|
internal_user_budget_duration: Optional[str] = None
|
|
max_end_user_budget: Optional[float] = None
|
|
#### REQUEST PRIORITIZATION ####
|
|
priority_reservation: Optional[Dict[str, float]] = None
|
|
#### RELIABILITY ####
|
|
REPEATED_STREAMING_CHUNK_LIMIT = 100 # catch if model starts looping the same chunk while streaming. Uses high default to prevent false positives.
|
|
request_timeout: float = 6000
|
|
module_level_aclient = AsyncHTTPHandler(timeout=request_timeout)
|
|
module_level_client = HTTPHandler(timeout=request_timeout)
|
|
num_retries: Optional[int] = None # per model endpoint
|
|
default_fallbacks: Optional[List] = None
|
|
fallbacks: Optional[List] = None
|
|
context_window_fallbacks: Optional[List] = None
|
|
content_policy_fallbacks: Optional[List] = None
|
|
allowed_fails: int = 3
|
|
num_retries_per_request: Optional[int] = (
|
|
None # for the request overall (incl. fallbacks + model retries)
|
|
)
|
|
####### SECRET MANAGERS #####################
|
|
secret_manager_client: Optional[Any] = (
|
|
None # list of instantiated key management clients - e.g. azure kv, infisical, etc.
|
|
)
|
|
_google_kms_resource_name: Optional[str] = None
|
|
_key_management_system: Optional[KeyManagementSystem] = None
|
|
_key_management_settings: Optional[KeyManagementSettings] = None
|
|
#### PII MASKING ####
|
|
output_parse_pii: bool = False
|
|
#############################################
|
|
|
|
|
|
def get_model_cost_map(url: str):
|
|
if (
|
|
os.getenv("LITELLM_LOCAL_MODEL_COST_MAP", False) == True
|
|
or os.getenv("LITELLM_LOCAL_MODEL_COST_MAP", False) == "True"
|
|
):
|
|
import importlib.resources
|
|
import json
|
|
|
|
with importlib.resources.open_text(
|
|
"litellm", "model_prices_and_context_window_backup.json"
|
|
) as f:
|
|
content = json.load(f)
|
|
return content
|
|
|
|
try:
|
|
with requests.get(
|
|
url, timeout=5
|
|
) as response: # set a 5 second timeout for the get request
|
|
response.raise_for_status() # Raise an exception if the request is unsuccessful
|
|
content = response.json()
|
|
return content
|
|
except Exception as e:
|
|
import importlib.resources
|
|
import json
|
|
|
|
with importlib.resources.open_text(
|
|
"litellm", "model_prices_and_context_window_backup.json"
|
|
) as f:
|
|
content = json.load(f)
|
|
return content
|
|
|
|
|
|
model_cost = get_model_cost_map(url=model_cost_map_url)
|
|
custom_prompt_dict: Dict[str, dict] = {}
|
|
|
|
|
|
####### THREAD-SPECIFIC DATA ###################
|
|
class MyLocal(threading.local):
|
|
def __init__(self):
|
|
self.user = "Hello World"
|
|
|
|
|
|
_thread_context = MyLocal()
|
|
|
|
|
|
def identify(event_details):
|
|
# Store user in thread local data
|
|
if "user" in event_details:
|
|
_thread_context.user = event_details["user"]
|
|
|
|
|
|
####### ADDITIONAL PARAMS ################### configurable params if you use proxy models like Helicone, map spend to org id, etc.
|
|
api_base = None
|
|
headers = None
|
|
api_version = None
|
|
organization = None
|
|
project = None
|
|
config_path = None
|
|
vertex_ai_safety_settings: Optional[dict] = None
|
|
####### COMPLETION MODELS ###################
|
|
open_ai_chat_completion_models: List = []
|
|
open_ai_text_completion_models: List = []
|
|
cohere_models: List = []
|
|
cohere_chat_models: List = []
|
|
mistral_chat_models: List = []
|
|
anthropic_models: List = []
|
|
empower_models: List = []
|
|
openrouter_models: List = []
|
|
vertex_language_models: List = []
|
|
vertex_vision_models: List = []
|
|
vertex_chat_models: List = []
|
|
vertex_code_chat_models: List = []
|
|
vertex_ai_image_models: List = []
|
|
vertex_text_models: List = []
|
|
vertex_code_text_models: List = []
|
|
vertex_embedding_models: List = []
|
|
vertex_anthropic_models: List = []
|
|
vertex_llama3_models: List = []
|
|
vertex_ai_ai21_models: List = []
|
|
vertex_mistral_models: List = []
|
|
ai21_models: List = []
|
|
ai21_chat_models: List = []
|
|
nlp_cloud_models: List = []
|
|
aleph_alpha_models: List = []
|
|
bedrock_models: List = []
|
|
fireworks_ai_models: List = []
|
|
fireworks_ai_embedding_models: List = []
|
|
deepinfra_models: List = []
|
|
perplexity_models: List = []
|
|
watsonx_models: List = []
|
|
gemini_models: List = []
|
|
|
|
|
|
def add_known_models():
|
|
for key, value in model_cost.items():
|
|
if value.get("litellm_provider") == "openai":
|
|
open_ai_chat_completion_models.append(key)
|
|
elif value.get("litellm_provider") == "text-completion-openai":
|
|
open_ai_text_completion_models.append(key)
|
|
elif value.get("litellm_provider") == "cohere":
|
|
cohere_models.append(key)
|
|
elif value.get("litellm_provider") == "cohere_chat":
|
|
cohere_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "mistral":
|
|
mistral_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "anthropic":
|
|
anthropic_models.append(key)
|
|
elif value.get("litellm_provider") == "empower":
|
|
empower_models.append(key)
|
|
elif value.get("litellm_provider") == "openrouter":
|
|
openrouter_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-text-models":
|
|
vertex_text_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-code-text-models":
|
|
vertex_code_text_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-language-models":
|
|
vertex_language_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-vision-models":
|
|
vertex_vision_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-chat-models":
|
|
vertex_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-code-chat-models":
|
|
vertex_code_chat_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-embedding-models":
|
|
vertex_embedding_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-anthropic_models":
|
|
key = key.replace("vertex_ai/", "")
|
|
vertex_anthropic_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-llama_models":
|
|
key = key.replace("vertex_ai/", "")
|
|
vertex_llama3_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-mistral_models":
|
|
key = key.replace("vertex_ai/", "")
|
|
vertex_mistral_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-ai21_models":
|
|
key = key.replace("vertex_ai/", "")
|
|
vertex_ai_ai21_models.append(key)
|
|
elif value.get("litellm_provider") == "vertex_ai-image-models":
|
|
key = key.replace("vertex_ai/", "")
|
|
vertex_ai_image_models.append(key)
|
|
elif value.get("litellm_provider") == "ai21":
|
|
if value.get("mode") == "chat":
|
|
ai21_chat_models.append(key)
|
|
else:
|
|
ai21_models.append(key)
|
|
elif value.get("litellm_provider") == "nlp_cloud":
|
|
nlp_cloud_models.append(key)
|
|
elif value.get("litellm_provider") == "aleph_alpha":
|
|
aleph_alpha_models.append(key)
|
|
elif value.get("litellm_provider") == "bedrock":
|
|
bedrock_models.append(key)
|
|
elif value.get("litellm_provider") == "deepinfra":
|
|
deepinfra_models.append(key)
|
|
elif value.get("litellm_provider") == "perplexity":
|
|
perplexity_models.append(key)
|
|
elif value.get("litellm_provider") == "watsonx":
|
|
watsonx_models.append(key)
|
|
elif value.get("litellm_provider") == "gemini":
|
|
gemini_models.append(key)
|
|
elif value.get("litellm_provider") == "fireworks_ai":
|
|
# ignore the 'up-to', '-to-' model names -> not real models. just for cost tracking based on model params.
|
|
if "-to-" not in key:
|
|
fireworks_ai_models.append(key)
|
|
elif value.get("litellm_provider") == "fireworks_ai-embedding-models":
|
|
# ignore the 'up-to', '-to-' model names -> not real models. just for cost tracking based on model params.
|
|
if "-to-" not in key:
|
|
fireworks_ai_embedding_models.append(key)
|
|
|
|
|
|
add_known_models()
|
|
# known openai compatible endpoints - we'll eventually move this list to the model_prices_and_context_window.json dictionary
|
|
openai_compatible_endpoints: List = [
|
|
"api.perplexity.ai",
|
|
"api.endpoints.anyscale.com/v1",
|
|
"api.deepinfra.com/v1/openai",
|
|
"api.mistral.ai/v1",
|
|
"codestral.mistral.ai/v1/chat/completions",
|
|
"codestral.mistral.ai/v1/fim/completions",
|
|
"api.groq.com/openai/v1",
|
|
"https://integrate.api.nvidia.com/v1",
|
|
"api.deepseek.com/v1",
|
|
"api.together.xyz/v1",
|
|
"app.empower.dev/api/v1",
|
|
"inference.friendli.ai/v1",
|
|
"api.sambanova.ai/v1",
|
|
]
|
|
|
|
# this is maintained for Exception Mapping
|
|
openai_compatible_providers: List = [
|
|
"anyscale",
|
|
"mistral",
|
|
"groq",
|
|
"nvidia_nim",
|
|
"cerebras",
|
|
"sambanova",
|
|
"ai21_chat",
|
|
"volcengine",
|
|
"codestral",
|
|
"deepseek",
|
|
"deepinfra",
|
|
"perplexity",
|
|
"xinference",
|
|
"together_ai",
|
|
"fireworks_ai",
|
|
"empower",
|
|
"friendliai",
|
|
"azure_ai",
|
|
"github",
|
|
"litellm_proxy",
|
|
]
|
|
openai_text_completion_compatible_providers: List = (
|
|
[ # providers that support `/v1/completions`
|
|
"together_ai",
|
|
"fireworks_ai",
|
|
]
|
|
)
|
|
|
|
# well supported replicate llms
|
|
replicate_models: List = [
|
|
# llama replicate supported LLMs
|
|
"replicate/llama-2-70b-chat:2796ee9483c3fd7aa2e171d38f4ca12251a30609463dcfd4cd76703f22e96cdf",
|
|
"a16z-infra/llama-2-13b-chat:2a7f981751ec7fdf87b5b91ad4db53683a98082e9ff7bfd12c8cd5ea85980a52",
|
|
"meta/codellama-13b:1c914d844307b0588599b8393480a3ba917b660c7e9dfae681542b5325f228db",
|
|
# Vicuna
|
|
"replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b",
|
|
"joehoover/instructblip-vicuna13b:c4c54e3c8c97cd50c2d2fec9be3b6065563ccf7d43787fb99f84151b867178fe",
|
|
# Flan T-5
|
|
"daanelson/flan-t5-large:ce962b3f6792a57074a601d3979db5839697add2e4e02696b3ced4c022d4767f",
|
|
# Others
|
|
"replicate/dolly-v2-12b:ef0e1aefc61f8e096ebe4db6b2bacc297daf2ef6899f0f7e001ec445893500e5",
|
|
"replit/replit-code-v1-3b:b84f4c074b807211cd75e3e8b1589b6399052125b4c27106e43d47189e8415ad",
|
|
]
|
|
|
|
clarifai_models: List = [
|
|
"clarifai/meta.Llama-3.Llama-3-8B-Instruct",
|
|
"clarifai/gcp.generate.gemma-1_1-7b-it",
|
|
"clarifai/mistralai.completion.mixtral-8x22B",
|
|
"clarifai/cohere.generate.command-r-plus",
|
|
"clarifai/databricks.drbx.dbrx-instruct",
|
|
"clarifai/mistralai.completion.mistral-large",
|
|
"clarifai/mistralai.completion.mistral-medium",
|
|
"clarifai/mistralai.completion.mistral-small",
|
|
"clarifai/mistralai.completion.mixtral-8x7B-Instruct-v0_1",
|
|
"clarifai/gcp.generate.gemma-2b-it",
|
|
"clarifai/gcp.generate.gemma-7b-it",
|
|
"clarifai/deci.decilm.deciLM-7B-instruct",
|
|
"clarifai/mistralai.completion.mistral-7B-Instruct",
|
|
"clarifai/gcp.generate.gemini-pro",
|
|
"clarifai/anthropic.completion.claude-v1",
|
|
"clarifai/anthropic.completion.claude-instant-1_2",
|
|
"clarifai/anthropic.completion.claude-instant",
|
|
"clarifai/anthropic.completion.claude-v2",
|
|
"clarifai/anthropic.completion.claude-2_1",
|
|
"clarifai/meta.Llama-2.codeLlama-70b-Python",
|
|
"clarifai/meta.Llama-2.codeLlama-70b-Instruct",
|
|
"clarifai/openai.completion.gpt-3_5-turbo-instruct",
|
|
"clarifai/meta.Llama-2.llama2-7b-chat",
|
|
"clarifai/meta.Llama-2.llama2-13b-chat",
|
|
"clarifai/meta.Llama-2.llama2-70b-chat",
|
|
"clarifai/openai.chat-completion.gpt-4-turbo",
|
|
"clarifai/microsoft.text-generation.phi-2",
|
|
"clarifai/meta.Llama-2.llama2-7b-chat-vllm",
|
|
"clarifai/upstage.solar.solar-10_7b-instruct",
|
|
"clarifai/openchat.openchat.openchat-3_5-1210",
|
|
"clarifai/togethercomputer.stripedHyena.stripedHyena-Nous-7B",
|
|
"clarifai/gcp.generate.text-bison",
|
|
"clarifai/meta.Llama-2.llamaGuard-7b",
|
|
"clarifai/fblgit.una-cybertron.una-cybertron-7b-v2",
|
|
"clarifai/openai.chat-completion.GPT-4",
|
|
"clarifai/openai.chat-completion.GPT-3_5-turbo",
|
|
"clarifai/ai21.complete.Jurassic2-Grande",
|
|
"clarifai/ai21.complete.Jurassic2-Grande-Instruct",
|
|
"clarifai/ai21.complete.Jurassic2-Jumbo-Instruct",
|
|
"clarifai/ai21.complete.Jurassic2-Jumbo",
|
|
"clarifai/ai21.complete.Jurassic2-Large",
|
|
"clarifai/cohere.generate.cohere-generate-command",
|
|
"clarifai/wizardlm.generate.wizardCoder-Python-34B",
|
|
"clarifai/wizardlm.generate.wizardLM-70B",
|
|
"clarifai/tiiuae.falcon.falcon-40b-instruct",
|
|
"clarifai/togethercomputer.RedPajama.RedPajama-INCITE-7B-Chat",
|
|
"clarifai/gcp.generate.code-gecko",
|
|
"clarifai/gcp.generate.code-bison",
|
|
"clarifai/mistralai.completion.mistral-7B-OpenOrca",
|
|
"clarifai/mistralai.completion.openHermes-2-mistral-7B",
|
|
"clarifai/wizardlm.generate.wizardLM-13B",
|
|
"clarifai/huggingface-research.zephyr.zephyr-7B-alpha",
|
|
"clarifai/wizardlm.generate.wizardCoder-15B",
|
|
"clarifai/microsoft.text-generation.phi-1_5",
|
|
"clarifai/databricks.Dolly-v2.dolly-v2-12b",
|
|
"clarifai/bigcode.code.StarCoder",
|
|
"clarifai/salesforce.xgen.xgen-7b-8k-instruct",
|
|
"clarifai/mosaicml.mpt.mpt-7b-instruct",
|
|
"clarifai/anthropic.completion.claude-3-opus",
|
|
"clarifai/anthropic.completion.claude-3-sonnet",
|
|
"clarifai/gcp.generate.gemini-1_5-pro",
|
|
"clarifai/gcp.generate.imagen-2",
|
|
"clarifai/salesforce.blip.general-english-image-caption-blip-2",
|
|
]
|
|
|
|
|
|
huggingface_models: List = [
|
|
"meta-llama/Llama-2-7b-hf",
|
|
"meta-llama/Llama-2-7b-chat-hf",
|
|
"meta-llama/Llama-2-13b-hf",
|
|
"meta-llama/Llama-2-13b-chat-hf",
|
|
"meta-llama/Llama-2-70b-hf",
|
|
"meta-llama/Llama-2-70b-chat-hf",
|
|
"meta-llama/Llama-2-7b",
|
|
"meta-llama/Llama-2-7b-chat",
|
|
"meta-llama/Llama-2-13b",
|
|
"meta-llama/Llama-2-13b-chat",
|
|
"meta-llama/Llama-2-70b",
|
|
"meta-llama/Llama-2-70b-chat",
|
|
] # these have been tested on extensively. But by default all text2text-generation and text-generation models are supported by liteLLM. - https://docs.litellm.ai/docs/providers
|
|
empower_models = [
|
|
"empower/empower-functions",
|
|
"empower/empower-functions-small",
|
|
]
|
|
|
|
together_ai_models: List = [
|
|
# llama llms - chat
|
|
"togethercomputer/llama-2-70b-chat",
|
|
# llama llms - language / instruct
|
|
"togethercomputer/llama-2-70b",
|
|
"togethercomputer/LLaMA-2-7B-32K",
|
|
"togethercomputer/Llama-2-7B-32K-Instruct",
|
|
"togethercomputer/llama-2-7b",
|
|
# falcon llms
|
|
"togethercomputer/falcon-40b-instruct",
|
|
"togethercomputer/falcon-7b-instruct",
|
|
# alpaca
|
|
"togethercomputer/alpaca-7b",
|
|
# chat llms
|
|
"HuggingFaceH4/starchat-alpha",
|
|
# code llms
|
|
"togethercomputer/CodeLlama-34b",
|
|
"togethercomputer/CodeLlama-34b-Instruct",
|
|
"togethercomputer/CodeLlama-34b-Python",
|
|
"defog/sqlcoder",
|
|
"NumbersStation/nsql-llama-2-7B",
|
|
"WizardLM/WizardCoder-15B-V1.0",
|
|
"WizardLM/WizardCoder-Python-34B-V1.0",
|
|
# language llms
|
|
"NousResearch/Nous-Hermes-Llama2-13b",
|
|
"Austism/chronos-hermes-13b",
|
|
"upstage/SOLAR-0-70b-16bit",
|
|
"WizardLM/WizardLM-70B-V1.0",
|
|
] # supports all together ai models, just pass in the model id e.g. completion(model="together_computer/replit_code_3b",...)
|
|
|
|
|
|
baseten_models: List = [
|
|
"qvv0xeq",
|
|
"q841o8w",
|
|
"31dxrj3",
|
|
] # FALCON 7B # WizardLM # Mosaic ML
|
|
|
|
|
|
# used for Cost Tracking & Token counting
|
|
# https://azure.microsoft.com/en-in/pricing/details/cognitive-services/openai-service/
|
|
# Azure returns gpt-35-turbo in their responses, we need to map this to azure/gpt-3.5-turbo for token counting
|
|
azure_llms = {
|
|
"gpt-35-turbo": "azure/gpt-35-turbo",
|
|
"gpt-35-turbo-16k": "azure/gpt-35-turbo-16k",
|
|
"gpt-35-turbo-instruct": "azure/gpt-35-turbo-instruct",
|
|
}
|
|
|
|
azure_embedding_models = {
|
|
"ada": "azure/ada",
|
|
}
|
|
|
|
petals_models = [
|
|
"petals-team/StableBeluga2",
|
|
]
|
|
|
|
ollama_models = ["llama2"]
|
|
|
|
maritalk_models = ["maritalk"]
|
|
|
|
model_list = (
|
|
open_ai_chat_completion_models
|
|
+ open_ai_text_completion_models
|
|
+ cohere_models
|
|
+ cohere_chat_models
|
|
+ anthropic_models
|
|
+ replicate_models
|
|
+ openrouter_models
|
|
+ huggingface_models
|
|
+ vertex_chat_models
|
|
+ vertex_text_models
|
|
+ ai21_models
|
|
+ ai21_chat_models
|
|
+ together_ai_models
|
|
+ baseten_models
|
|
+ aleph_alpha_models
|
|
+ nlp_cloud_models
|
|
+ ollama_models
|
|
+ bedrock_models
|
|
+ deepinfra_models
|
|
+ perplexity_models
|
|
+ maritalk_models
|
|
+ vertex_language_models
|
|
+ watsonx_models
|
|
+ gemini_models
|
|
)
|
|
|
|
|
|
class LlmProviders(str, Enum):
|
|
OPENAI = "openai"
|
|
CUSTOM_OPENAI = "custom_openai"
|
|
TEXT_COMPLETION_OPENAI = "text-completion-openai"
|
|
COHERE = "cohere"
|
|
COHERE_CHAT = "cohere_chat"
|
|
CLARIFAI = "clarifai"
|
|
ANTHROPIC = "anthropic"
|
|
REPLICATE = "replicate"
|
|
HUGGINGFACE = "huggingface"
|
|
TOGETHER_AI = "together_ai"
|
|
OPENROUTER = "openrouter"
|
|
VERTEX_AI = "vertex_ai"
|
|
VERTEX_AI_BETA = "vertex_ai_beta"
|
|
PALM = "palm"
|
|
GEMINI = "gemini"
|
|
AI21 = "ai21"
|
|
BASETEN = "baseten"
|
|
AZURE = "azure"
|
|
AZURE_TEXT = "azure_text"
|
|
AZURE_AI = "azure_ai"
|
|
SAGEMAKER = "sagemaker"
|
|
SAGEMAKER_CHAT = "sagemaker_chat"
|
|
BEDROCK = "bedrock"
|
|
VLLM = "vllm"
|
|
NLP_CLOUD = "nlp_cloud"
|
|
PETALS = "petals"
|
|
OOBABOOGA = "oobabooga"
|
|
OLLAMA = "ollama"
|
|
OLLAMA_CHAT = "ollama_chat"
|
|
DEEPINFRA = "deepinfra"
|
|
PERPLEXITY = "perplexity"
|
|
ANYSCALE = "anyscale"
|
|
MISTRAL = "mistral"
|
|
GROQ = "groq"
|
|
NVIDIA_NIM = "nvidia_nim"
|
|
CEREBRAS = "cerebras"
|
|
AI21_CHAT = "ai21_chat"
|
|
VOLCENGINE = "volcengine"
|
|
CODESTRAL = "codestral"
|
|
TEXT_COMPLETION_CODESTRAL = "text-completion-codestral"
|
|
DEEPSEEK = "deepseek"
|
|
SAMBANOVA = "sambanova"
|
|
MARITALK = "maritalk"
|
|
VOYAGE = "voyage"
|
|
CLOUDFLARE = "cloudflare"
|
|
XINFERENCE = "xinference"
|
|
FIREWORKS_AI = "fireworks_ai"
|
|
FRIENDLIAI = "friendliai"
|
|
WATSONX = "watsonx"
|
|
TRITON = "triton"
|
|
PREDIBASE = "predibase"
|
|
DATABRICKS = "databricks"
|
|
EMPOWER = "empower"
|
|
GITHUB = "github"
|
|
CUSTOM = "custom"
|
|
LITELLM_PROXY = "litellm_proxy"
|
|
|
|
|
|
provider_list: List[Union[LlmProviders, str]] = list(LlmProviders)
|
|
|
|
|
|
models_by_provider: dict = {
|
|
"openai": open_ai_chat_completion_models + open_ai_text_completion_models,
|
|
"cohere": cohere_models + cohere_chat_models,
|
|
"cohere_chat": cohere_chat_models,
|
|
"anthropic": anthropic_models,
|
|
"replicate": replicate_models,
|
|
"huggingface": huggingface_models,
|
|
"together_ai": together_ai_models,
|
|
"baseten": baseten_models,
|
|
"openrouter": openrouter_models,
|
|
"vertex_ai": vertex_chat_models
|
|
+ vertex_text_models
|
|
+ vertex_anthropic_models
|
|
+ vertex_vision_models
|
|
+ vertex_language_models,
|
|
"ai21": ai21_models,
|
|
"bedrock": bedrock_models,
|
|
"petals": petals_models,
|
|
"ollama": ollama_models,
|
|
"deepinfra": deepinfra_models,
|
|
"perplexity": perplexity_models,
|
|
"maritalk": maritalk_models,
|
|
"watsonx": watsonx_models,
|
|
"gemini": gemini_models,
|
|
"fireworks_ai": fireworks_ai_models + fireworks_ai_embedding_models,
|
|
}
|
|
|
|
# mapping for those models which have larger equivalents
|
|
longer_context_model_fallback_dict: dict = {
|
|
# openai chat completion models
|
|
"gpt-3.5-turbo": "gpt-3.5-turbo-16k",
|
|
"gpt-3.5-turbo-0301": "gpt-3.5-turbo-16k-0301",
|
|
"gpt-3.5-turbo-0613": "gpt-3.5-turbo-16k-0613",
|
|
"gpt-4": "gpt-4-32k",
|
|
"gpt-4-0314": "gpt-4-32k-0314",
|
|
"gpt-4-0613": "gpt-4-32k-0613",
|
|
# anthropic
|
|
"claude-instant-1": "claude-2",
|
|
"claude-instant-1.2": "claude-2",
|
|
# vertexai
|
|
"chat-bison": "chat-bison-32k",
|
|
"chat-bison@001": "chat-bison-32k",
|
|
"codechat-bison": "codechat-bison-32k",
|
|
"codechat-bison@001": "codechat-bison-32k",
|
|
# openrouter
|
|
"openrouter/openai/gpt-3.5-turbo": "openrouter/openai/gpt-3.5-turbo-16k",
|
|
"openrouter/anthropic/claude-instant-v1": "openrouter/anthropic/claude-2",
|
|
}
|
|
|
|
####### EMBEDDING MODELS ###################
|
|
open_ai_embedding_models: List = ["text-embedding-ada-002"]
|
|
cohere_embedding_models: List = [
|
|
"embed-english-v3.0",
|
|
"embed-english-light-v3.0",
|
|
"embed-multilingual-v3.0",
|
|
"embed-english-v2.0",
|
|
"embed-english-light-v2.0",
|
|
"embed-multilingual-v2.0",
|
|
]
|
|
bedrock_embedding_models: List = [
|
|
"amazon.titan-embed-text-v1",
|
|
"cohere.embed-english-v3",
|
|
"cohere.embed-multilingual-v3",
|
|
]
|
|
|
|
all_embedding_models = (
|
|
open_ai_embedding_models
|
|
+ cohere_embedding_models
|
|
+ bedrock_embedding_models
|
|
+ vertex_embedding_models
|
|
+ fireworks_ai_embedding_models
|
|
)
|
|
|
|
####### IMAGE GENERATION MODELS ###################
|
|
openai_image_generation_models = ["dall-e-2", "dall-e-3"]
|
|
|
|
from .timeout import timeout
|
|
from .cost_calculator import completion_cost
|
|
from litellm.litellm_core_utils.litellm_logging import Logging
|
|
from litellm.litellm_core_utils.get_llm_provider_logic import get_llm_provider
|
|
from litellm.litellm_core_utils.core_helpers import remove_index_from_tool_calls
|
|
from litellm.litellm_core_utils.token_counter import get_modified_max_tokens
|
|
from .utils import (
|
|
client,
|
|
exception_type,
|
|
get_optional_params,
|
|
get_response_string,
|
|
modify_integration,
|
|
token_counter,
|
|
create_pretrained_tokenizer,
|
|
create_tokenizer,
|
|
supports_function_calling,
|
|
supports_response_schema,
|
|
supports_parallel_function_calling,
|
|
supports_vision,
|
|
supports_system_messages,
|
|
get_litellm_params,
|
|
acreate,
|
|
get_model_list,
|
|
get_max_tokens,
|
|
get_model_info,
|
|
register_prompt_template,
|
|
validate_environment,
|
|
check_valid_key,
|
|
register_model,
|
|
encode,
|
|
decode,
|
|
_calculate_retry_after,
|
|
_should_retry,
|
|
get_supported_openai_params,
|
|
get_api_base,
|
|
get_first_chars_messages,
|
|
ModelResponse,
|
|
EmbeddingResponse,
|
|
ImageResponse,
|
|
TranscriptionResponse,
|
|
TextCompletionResponse,
|
|
get_provider_fields,
|
|
ModelResponseListIterator,
|
|
)
|
|
|
|
ALL_LITELLM_RESPONSE_TYPES = [
|
|
ModelResponse,
|
|
EmbeddingResponse,
|
|
ImageResponse,
|
|
TranscriptionResponse,
|
|
TextCompletionResponse,
|
|
]
|
|
|
|
from .types.utils import ImageObject
|
|
from .llms.custom_llm import CustomLLM
|
|
from .llms.huggingface_restapi import HuggingfaceConfig
|
|
from .llms.anthropic.chat import AnthropicConfig
|
|
from .llms.anthropic.completion import AnthropicTextConfig
|
|
from .llms.databricks.chat import DatabricksConfig, DatabricksEmbeddingConfig
|
|
from .llms.predibase import PredibaseConfig
|
|
from .llms.replicate import ReplicateConfig
|
|
from .llms.cohere.completion import CohereConfig
|
|
from .llms.clarifai import ClarifaiConfig
|
|
from .llms.AI21.completion import AI21Config
|
|
from .llms.AI21.chat import AI21ChatConfig
|
|
from .llms.together_ai import TogetherAIConfig
|
|
from .llms.cloudflare import CloudflareConfig
|
|
from .llms.palm import PalmConfig
|
|
from .llms.gemini import GeminiConfig
|
|
from .llms.nlp_cloud import NLPCloudConfig
|
|
from .llms.aleph_alpha import AlephAlphaConfig
|
|
from .llms.petals import PetalsConfig
|
|
from .llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexGeminiConfig,
|
|
GoogleAIStudioGeminiConfig,
|
|
VertexAIConfig,
|
|
)
|
|
from .llms.vertex_ai_and_google_ai_studio.vertex_embeddings.embedding_handler import (
|
|
VertexAITextEmbeddingConfig,
|
|
)
|
|
from .llms.vertex_ai_and_google_ai_studio.vertex_ai_anthropic import (
|
|
VertexAIAnthropicConfig,
|
|
)
|
|
from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.llama3.transformation import (
|
|
VertexAILlama3Config,
|
|
)
|
|
from .llms.vertex_ai_and_google_ai_studio.vertex_ai_partner_models.ai21.transformation import (
|
|
VertexAIAi21Config,
|
|
)
|
|
|
|
from .llms.sagemaker.sagemaker import SagemakerConfig
|
|
from .llms.ollama import OllamaConfig
|
|
from .llms.ollama_chat import OllamaChatConfig
|
|
from .llms.maritalk import MaritTalkConfig
|
|
from .llms.bedrock.chat.invoke_handler import (
|
|
AmazonCohereChatConfig,
|
|
AmazonConverseConfig,
|
|
bedrock_tool_name_mappings,
|
|
)
|
|
from .llms.bedrock.chat.converse_handler import (
|
|
BEDROCK_CONVERSE_MODELS,
|
|
)
|
|
from .llms.bedrock.common_utils import (
|
|
AmazonTitanConfig,
|
|
AmazonAI21Config,
|
|
AmazonAnthropicConfig,
|
|
AmazonAnthropicClaude3Config,
|
|
AmazonCohereConfig,
|
|
AmazonLlamaConfig,
|
|
AmazonStabilityConfig,
|
|
AmazonMistralConfig,
|
|
AmazonBedrockGlobalConfig,
|
|
)
|
|
from .llms.bedrock.embed.amazon_titan_g1_transformation import AmazonTitanG1Config
|
|
from .llms.bedrock.embed.amazon_titan_multimodal_transformation import (
|
|
AmazonTitanMultimodalEmbeddingG1Config,
|
|
)
|
|
from .llms.bedrock.embed.amazon_titan_v2_transformation import (
|
|
AmazonTitanV2Config,
|
|
)
|
|
from .llms.bedrock.embed.cohere_transformation import BedrockCohereEmbeddingConfig
|
|
from .llms.OpenAI.openai import (
|
|
OpenAIConfig,
|
|
OpenAITextCompletionConfig,
|
|
MistralEmbeddingConfig,
|
|
DeepInfraConfig,
|
|
GroqConfig,
|
|
AzureAIStudioConfig,
|
|
)
|
|
from .llms.mistral.mistral_chat_transformation import MistralConfig
|
|
from .llms.OpenAI.chat.o1_transformation import (
|
|
OpenAIO1Config,
|
|
)
|
|
from .llms.OpenAI.chat.gpt_transformation import (
|
|
OpenAIGPTConfig,
|
|
)
|
|
from .llms.nvidia_nim import NvidiaNimConfig
|
|
from .llms.cerebras.chat import CerebrasConfig
|
|
from .llms.sambanova.chat import SambanovaConfig
|
|
from .llms.AI21.chat import AI21ChatConfig
|
|
from .llms.fireworks_ai.chat.fireworks_ai_transformation import FireworksAIConfig
|
|
from .llms.fireworks_ai.embed.fireworks_ai_transformation import (
|
|
FireworksAIEmbeddingConfig,
|
|
)
|
|
from .llms.volcengine import VolcEngineConfig
|
|
from .llms.text_completion_codestral import MistralTextCompletionConfig
|
|
from .llms.AzureOpenAI.azure import (
|
|
AzureOpenAIConfig,
|
|
AzureOpenAIError,
|
|
AzureOpenAIAssistantsAPIConfig,
|
|
)
|
|
from .llms.watsonx import IBMWatsonXAIConfig
|
|
from .main import * # type: ignore
|
|
from .integrations import *
|
|
from .exceptions import (
|
|
AuthenticationError,
|
|
InvalidRequestError,
|
|
BadRequestError,
|
|
NotFoundError,
|
|
RateLimitError,
|
|
ServiceUnavailableError,
|
|
OpenAIError,
|
|
ContextWindowExceededError,
|
|
ContentPolicyViolationError,
|
|
BudgetExceededError,
|
|
APIError,
|
|
Timeout,
|
|
APIConnectionError,
|
|
UnsupportedParamsError,
|
|
APIResponseValidationError,
|
|
UnprocessableEntityError,
|
|
InternalServerError,
|
|
JSONSchemaValidationError,
|
|
LITELLM_EXCEPTION_TYPES,
|
|
MockException,
|
|
)
|
|
from .budget_manager import BudgetManager
|
|
from .proxy.proxy_cli import run_server
|
|
from .router import Router
|
|
from .assistants.main import *
|
|
from .batches.main import *
|
|
from .rerank_api.main import *
|
|
from .fine_tuning.main import *
|
|
from .files.main import *
|
|
from .scheduler import *
|
|
from .cost_calculator import response_cost_calculator, cost_per_token
|
|
|
|
### ADAPTERS ###
|
|
from .types.adapter import AdapterItem
|
|
|
|
adapters: List[AdapterItem] = []
|
|
|
|
### CUSTOM LLMs ###
|
|
from .types.llms.custom_llm import CustomLLMItem
|
|
from .types.utils import GenericStreamingChunk
|
|
|
|
custom_provider_map: List[CustomLLMItem] = []
|
|
_custom_providers: List[str] = (
|
|
[]
|
|
) # internal helper util, used to track names of custom providers
|