litellm/litellm/router_strategy/provider_budgets.py
2024-11-19 14:34:23 -08:00

209 lines
7.6 KiB
Python

"""
Provider budget limiting strategy
Use this if you want to set $ budget limits for each provider.
Example:
```
openai:
budget_limit: 0.000000000001
time_period: 1d
anthropic:
budget_limit: 100
time_period: 7d
```
"""
import random
from typing import TYPE_CHECKING, Any, Dict, List, Optional, TypedDict, Union
import litellm
from litellm._logging import verbose_router_logger
from litellm.caching.caching import DualCache
from litellm.integrations.custom_logger import CustomLogger
from litellm.litellm_core_utils.core_helpers import _get_parent_otel_span_from_kwargs
from litellm.types.router import (
LiteLLM_Params,
ProviderBudgetConfigType,
ProviderBudgetInfo,
)
from litellm.types.utils import StandardLoggingPayload
if TYPE_CHECKING:
from opentelemetry.trace import Span as _Span
Span = _Span
else:
Span = Any
class ProviderBudgetLimiting(CustomLogger):
def __init__(self, router_cache: DualCache, provider_budget_config: dict):
self.router_cache = router_cache
self.provider_budget_config: ProviderBudgetConfigType = provider_budget_config
verbose_router_logger.debug(
f"Initalized Provider budget config: {self.provider_budget_config}"
)
async def async_get_available_deployments(
self,
healthy_deployments: List[Dict],
request_kwargs: Optional[Dict] = None,
) -> Optional[Dict]:
"""
For all deployments, check their LLM provider budget is less than their budget limit.
If multiple deployments are available, randomly pick one.
Example:
if deployment = openai/gpt-3.5-turbo
check if openai budget limit is exceeded
"""
potential_deployments: List[Dict] = []
# Extract the parent OpenTelemetry span for tracing
parent_otel_span: Optional[Span] = _get_parent_otel_span_from_kwargs(
request_kwargs
)
# Collect all providers and their budget configs
# {"openai": ProviderBudgetInfo, "anthropic": ProviderBudgetInfo, "azure": None}
_provider_configs: Dict[str, Optional[ProviderBudgetInfo]] = {}
for deployment in healthy_deployments:
provider = self._get_llm_provider_for_deployment(deployment)
if provider is None:
continue
budget_config = self._get_budget_config_for_provider(provider)
_provider_configs[provider] = budget_config
# Filter out providers without budget config
provider_configs: Dict[str, ProviderBudgetInfo] = {
provider: config
for provider, config in _provider_configs.items()
if config is not None
}
# Build cache keys for batch retrieval
cache_keys = []
for provider, config in provider_configs.items():
cache_keys.append(f"provider_spend:{provider}:{config.time_period}")
# Fetch current spend for all providers using batch cache
_current_spends = await self.router_cache.async_batch_get_cache(
keys=cache_keys,
parent_otel_span=parent_otel_span,
)
current_spends: List = _current_spends or [0.0] * len(provider_configs)
# Map providers to their current spend values
provider_spend_map: Dict[str, float] = {}
for idx, provider in enumerate(provider_configs.keys()):
provider_spend_map[provider] = float(current_spends[idx] or 0.0)
# Filter healthy deployments based on budget constraints
for deployment in healthy_deployments:
provider = self._get_llm_provider_for_deployment(deployment)
if provider is None:
continue
budget_config = provider_configs.get(provider)
if not budget_config:
continue
current_spend = provider_spend_map.get(provider, 0.0)
budget_limit = budget_config.budget_limit
verbose_router_logger.debug(
f"Current spend for {provider}: {current_spend}, budget limit: {budget_limit}"
)
if current_spend >= budget_limit:
verbose_router_logger.debug(
f"Skipping deployment {deployment} for provider {provider} as spend limit exceeded"
)
continue
potential_deployments.append(deployment)
# Randomly pick one deployment from potential deployments
return random.choice(potential_deployments) if potential_deployments else None
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
"""
Increment provider spend in DualCache (InMemory + Redis)
Handles saving current provider spend to Redis.
Spend is stored as:
provider_spend:{provider}:{time_period}
ex. provider_spend:openai:1d
ex. provider_spend:anthropic:7d
The time period is tracked for time_periods set in the provider budget config.
"""
verbose_router_logger.debug("in ProviderBudgetLimiting.async_log_success_event")
standard_logging_payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if standard_logging_payload is None:
raise ValueError("standard_logging_payload is required")
response_cost: float = standard_logging_payload.get("response_cost", 0)
custom_llm_provider: str = kwargs.get("litellm_params", {}).get(
"custom_llm_provider", None
)
if custom_llm_provider is None:
raise ValueError("custom_llm_provider is required")
budget_config = self._get_budget_config_for_provider(custom_llm_provider)
if budget_config is None:
raise ValueError(
f"No budget config found for provider {custom_llm_provider}, self.provider_budget_config: {self.provider_budget_config}"
)
spend_key = f"provider_spend:{custom_llm_provider}:{budget_config.time_period}"
ttl_seconds = self.get_ttl_seconds(budget_config.time_period)
verbose_router_logger.debug(
f"Incrementing spend for {spend_key} by {response_cost}, ttl: {ttl_seconds}"
)
# Increment the spend in Redis and set TTL
await self.router_cache.async_increment_cache(
key=spend_key,
value=response_cost,
ttl=ttl_seconds,
)
verbose_router_logger.debug(
f"Incremented spend for {spend_key} by {response_cost}, ttl: {ttl_seconds}"
)
def _get_budget_config_for_provider(
self, provider: str
) -> Optional[ProviderBudgetInfo]:
return self.provider_budget_config.get(provider, None)
def _get_llm_provider_for_deployment(self, deployment: Dict) -> Optional[str]:
try:
_litellm_params: LiteLLM_Params = LiteLLM_Params(
**deployment.get("litellm_params", {"model": ""})
)
_, custom_llm_provider, _, _ = litellm.get_llm_provider(
model=_litellm_params.model,
litellm_params=_litellm_params,
)
except Exception:
verbose_router_logger.error(
f"Error getting LLM provider for deployment: {deployment}"
)
return None
return custom_llm_provider
def get_ttl_seconds(self, time_period: str) -> int:
"""
Convert time period (e.g., '1d', '30d') to seconds for Redis TTL
"""
if time_period.endswith("d"):
days = int(time_period[:-1])
return days * 24 * 60 * 60
raise ValueError(f"Unsupported time period format: {time_period}")