forked from phoenix/litellm-mirror
* ci(config.yml): add a 'check_code_quality' step Addresses https://github.com/BerriAI/litellm/issues/5991 * ci(config.yml): check why circle ci doesn't pick up this test * ci(config.yml): fix to run 'check_code_quality' tests * fix(__init__.py): fix unprotected import * fix(__init__.py): don't remove unused imports * build(ruff.toml): update ruff.toml to ignore unused imports * fix: fix: ruff + pyright - fix linting + type-checking errors * fix: fix linting errors * fix(lago.py): fix module init error * fix: fix linting errors * ci(config.yml): cd into correct dir for checks * fix(proxy_server.py): fix linting error * fix(utils.py): fix bare except causes ruff linting errors * fix: ruff - fix remaining linting errors * fix(clickhouse.py): use standard logging object * fix(__init__.py): fix unprotected import * fix: ruff - fix linting errors * fix: fix linting errors * ci(config.yml): cleanup code qa step (formatting handled in local_testing) * fix(_health_endpoints.py): fix ruff linting errors * ci(config.yml): just use ruff in check_code_quality pipeline for now * build(custom_guardrail.py): include missing file * style(embedding_handler.py): fix ruff check
2064 lines
76 KiB
Python
2064 lines
76 KiB
Python
import asyncio
|
||
import json
|
||
import os
|
||
import time
|
||
import types
|
||
from typing import Any, Callable, Coroutine, Iterable, List, Literal, Optional, Union
|
||
|
||
import httpx # type: ignore
|
||
from openai import AsyncAzureOpenAI, AzureOpenAI
|
||
from typing_extensions import overload
|
||
|
||
import litellm
|
||
from litellm.caching import DualCache
|
||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
||
from litellm.types.utils import EmbeddingResponse
|
||
from litellm.utils import (
|
||
CustomStreamWrapper,
|
||
ModelResponse,
|
||
UnsupportedParamsError,
|
||
convert_to_model_response_object,
|
||
get_secret,
|
||
modify_url,
|
||
)
|
||
|
||
from ...types.llms.openai import (
|
||
Batch,
|
||
CancelBatchRequest,
|
||
ChatCompletionToolChoiceFunctionParam,
|
||
ChatCompletionToolChoiceObjectParam,
|
||
ChatCompletionToolParam,
|
||
ChatCompletionToolParamFunctionChunk,
|
||
CreateBatchRequest,
|
||
HttpxBinaryResponseContent,
|
||
RetrieveBatchRequest,
|
||
)
|
||
from ..base import BaseLLM
|
||
from .common_utils import process_azure_headers
|
||
|
||
azure_ad_cache = DualCache()
|
||
|
||
|
||
class AzureOpenAIError(Exception):
|
||
def __init__(
|
||
self,
|
||
status_code,
|
||
message,
|
||
request: Optional[httpx.Request] = None,
|
||
response: Optional[httpx.Response] = None,
|
||
headers: Optional[httpx.Headers] = None,
|
||
):
|
||
self.status_code = status_code
|
||
self.message = message
|
||
self.headers = headers
|
||
if request:
|
||
self.request = request
|
||
else:
|
||
self.request = httpx.Request(method="POST", url="https://api.openai.com/v1")
|
||
if response:
|
||
self.response = response
|
||
else:
|
||
self.response = httpx.Response(
|
||
status_code=status_code, request=self.request
|
||
)
|
||
super().__init__(
|
||
self.message
|
||
) # Call the base class constructor with the parameters it needs
|
||
|
||
|
||
class AzureOpenAIConfig:
|
||
"""
|
||
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
|
||
|
||
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. It inherits from `OpenAIConfig`. Below are the parameters::
|
||
|
||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||
|
||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||
|
||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||
|
||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||
|
||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||
|
||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||
|
||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||
|
||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||
|
||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||
|
||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
frequency_penalty: Optional[int] = None,
|
||
function_call: Optional[Union[str, dict]] = None,
|
||
functions: Optional[list] = None,
|
||
logit_bias: Optional[dict] = None,
|
||
max_tokens: Optional[int] = None,
|
||
n: Optional[int] = None,
|
||
presence_penalty: Optional[int] = None,
|
||
stop: Optional[Union[str, list]] = None,
|
||
temperature: Optional[int] = None,
|
||
top_p: Optional[int] = None,
|
||
) -> None:
|
||
locals_ = locals().copy()
|
||
for key, value in locals_.items():
|
||
if key != "self" and value is not None:
|
||
setattr(self.__class__, key, value)
|
||
|
||
@classmethod
|
||
def get_config(cls):
|
||
return {
|
||
k: v
|
||
for k, v in cls.__dict__.items()
|
||
if not k.startswith("__")
|
||
and not isinstance(
|
||
v,
|
||
(
|
||
types.FunctionType,
|
||
types.BuiltinFunctionType,
|
||
classmethod,
|
||
staticmethod,
|
||
),
|
||
)
|
||
and v is not None
|
||
}
|
||
|
||
def get_supported_openai_params(self):
|
||
return [
|
||
"temperature",
|
||
"n",
|
||
"stream",
|
||
"stop",
|
||
"max_tokens",
|
||
"max_completion_tokens",
|
||
"tools",
|
||
"tool_choice",
|
||
"presence_penalty",
|
||
"frequency_penalty",
|
||
"logit_bias",
|
||
"user",
|
||
"function_call",
|
||
"functions",
|
||
"tools",
|
||
"tool_choice",
|
||
"top_p",
|
||
"logprobs",
|
||
"top_logprobs",
|
||
"response_format",
|
||
"seed",
|
||
"extra_headers",
|
||
]
|
||
|
||
def map_openai_params(
|
||
self,
|
||
non_default_params: dict,
|
||
optional_params: dict,
|
||
model: str,
|
||
api_version: str, # Y-M-D-{optional}
|
||
drop_params,
|
||
) -> dict:
|
||
supported_openai_params = self.get_supported_openai_params()
|
||
|
||
api_version_times = api_version.split("-")
|
||
api_version_year = api_version_times[0]
|
||
api_version_month = api_version_times[1]
|
||
api_version_day = api_version_times[2]
|
||
for param, value in non_default_params.items():
|
||
if param == "tool_choice":
|
||
"""
|
||
This parameter requires API version 2023-12-01-preview or later
|
||
|
||
tool_choice='required' is not supported as of 2024-05-01-preview
|
||
"""
|
||
## check if api version supports this param ##
|
||
if (
|
||
api_version_year < "2023"
|
||
or (api_version_year == "2023" and api_version_month < "12")
|
||
or (
|
||
api_version_year == "2023"
|
||
and api_version_month == "12"
|
||
and api_version_day < "01"
|
||
)
|
||
):
|
||
if litellm.drop_params is True or (
|
||
drop_params is not None and drop_params is True
|
||
):
|
||
pass
|
||
else:
|
||
raise UnsupportedParamsError(
|
||
status_code=400,
|
||
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
|
||
)
|
||
elif value == "required" and (
|
||
api_version_year == "2024" and api_version_month <= "05"
|
||
): ## check if tool_choice value is supported ##
|
||
if litellm.drop_params is True or (
|
||
drop_params is not None and drop_params is True
|
||
):
|
||
pass
|
||
else:
|
||
raise UnsupportedParamsError(
|
||
status_code=400,
|
||
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
|
||
)
|
||
else:
|
||
optional_params["tool_choice"] = value
|
||
elif param == "response_format" and isinstance(value, dict):
|
||
json_schema: Optional[dict] = None
|
||
schema_name: str = ""
|
||
if "response_schema" in value:
|
||
json_schema = value["response_schema"]
|
||
schema_name = "json_tool_call"
|
||
elif "json_schema" in value:
|
||
json_schema = value["json_schema"]["schema"]
|
||
schema_name = value["json_schema"]["name"]
|
||
"""
|
||
Follow similar approach to anthropic - translate to a single tool call.
|
||
|
||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||
- You usually want to provide a single tool
|
||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||
"""
|
||
if json_schema is not None and (
|
||
(api_version_year <= "2024" and api_version_month < "08")
|
||
or "gpt-4o" not in model
|
||
): # azure api version "2024-08-01-preview" onwards supports 'json_schema' only for gpt-4o
|
||
_tool_choice = ChatCompletionToolChoiceObjectParam(
|
||
type="function",
|
||
function=ChatCompletionToolChoiceFunctionParam(
|
||
name=schema_name
|
||
),
|
||
)
|
||
|
||
_tool = ChatCompletionToolParam(
|
||
type="function",
|
||
function=ChatCompletionToolParamFunctionChunk(
|
||
name=schema_name, parameters=json_schema
|
||
),
|
||
)
|
||
|
||
optional_params["tools"] = [_tool]
|
||
optional_params["tool_choice"] = _tool_choice
|
||
optional_params["json_mode"] = True
|
||
else:
|
||
optional_params["response_format"] = value
|
||
elif param == "max_completion_tokens":
|
||
# TODO - Azure OpenAI will probably add support for this, we should pass it through when Azure adds support
|
||
optional_params["max_tokens"] = value
|
||
elif param in supported_openai_params:
|
||
optional_params[param] = value
|
||
|
||
return optional_params
|
||
|
||
def get_mapped_special_auth_params(self) -> dict:
|
||
return {"token": "azure_ad_token"}
|
||
|
||
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||
for param, value in non_default_params.items():
|
||
if param == "token":
|
||
optional_params["azure_ad_token"] = value
|
||
return optional_params
|
||
|
||
def get_eu_regions(self) -> List[str]:
|
||
"""
|
||
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
|
||
"""
|
||
return ["europe", "sweden", "switzerland", "france", "uk"]
|
||
|
||
|
||
class AzureOpenAIAssistantsAPIConfig:
|
||
"""
|
||
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/assistants-reference-messages?tabs=python#create-message
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
) -> None:
|
||
pass
|
||
|
||
def get_supported_openai_create_message_params(self):
|
||
return [
|
||
"role",
|
||
"content",
|
||
"attachments",
|
||
"metadata",
|
||
]
|
||
|
||
def map_openai_params_create_message_params(
|
||
self, non_default_params: dict, optional_params: dict
|
||
):
|
||
for param, value in non_default_params.items():
|
||
if param == "role":
|
||
optional_params["role"] = value
|
||
if param == "metadata":
|
||
optional_params["metadata"] = value
|
||
elif param == "content": # only string accepted
|
||
if isinstance(value, str):
|
||
optional_params["content"] = value
|
||
else:
|
||
raise litellm.utils.UnsupportedParamsError(
|
||
message="Azure only accepts content as a string.",
|
||
status_code=400,
|
||
)
|
||
elif (
|
||
param == "attachments"
|
||
): # this is a v2 param. Azure currently supports the old 'file_id's param
|
||
file_ids: List[str] = []
|
||
if isinstance(value, list):
|
||
for item in value:
|
||
if "file_id" in item:
|
||
file_ids.append(item["file_id"])
|
||
else:
|
||
if litellm.drop_params is True:
|
||
pass
|
||
else:
|
||
raise litellm.utils.UnsupportedParamsError(
|
||
message="Azure doesn't support {}. To drop it from the call, set `litellm.drop_params = True.".format(
|
||
value
|
||
),
|
||
status_code=400,
|
||
)
|
||
else:
|
||
raise litellm.utils.UnsupportedParamsError(
|
||
message="Invalid param. attachments should always be a list. Got={}, Expected=List. Raw value={}".format(
|
||
type(value), value
|
||
),
|
||
status_code=400,
|
||
)
|
||
return optional_params
|
||
|
||
|
||
def select_azure_base_url_or_endpoint(azure_client_params: dict):
|
||
# azure_client_params = {
|
||
# "api_version": api_version,
|
||
# "azure_endpoint": api_base,
|
||
# "azure_deployment": model,
|
||
# "http_client": litellm.client_session,
|
||
# "max_retries": max_retries,
|
||
# "timeout": timeout,
|
||
# }
|
||
azure_endpoint = azure_client_params.get("azure_endpoint", None)
|
||
if azure_endpoint is not None:
|
||
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
|
||
if "/openai/deployments" in azure_endpoint:
|
||
# this is base_url, not an azure_endpoint
|
||
azure_client_params["base_url"] = azure_endpoint
|
||
azure_client_params.pop("azure_endpoint")
|
||
|
||
return azure_client_params
|
||
|
||
|
||
def get_azure_ad_token_from_oidc(azure_ad_token: str):
|
||
azure_client_id = os.getenv("AZURE_CLIENT_ID", None)
|
||
azure_tenant_id = os.getenv("AZURE_TENANT_ID", None)
|
||
azure_authority_host = os.getenv(
|
||
"AZURE_AUTHORITY_HOST", "https://login.microsoftonline.com"
|
||
)
|
||
|
||
if azure_client_id is None or azure_tenant_id is None:
|
||
raise AzureOpenAIError(
|
||
status_code=422,
|
||
message="AZURE_CLIENT_ID and AZURE_TENANT_ID must be set",
|
||
)
|
||
|
||
oidc_token = get_secret(azure_ad_token)
|
||
|
||
if oidc_token is None:
|
||
raise AzureOpenAIError(
|
||
status_code=401,
|
||
message="OIDC token could not be retrieved from secret manager.",
|
||
)
|
||
|
||
azure_ad_token_cache_key = json.dumps(
|
||
{
|
||
"azure_client_id": azure_client_id,
|
||
"azure_tenant_id": azure_tenant_id,
|
||
"azure_authority_host": azure_authority_host,
|
||
"oidc_token": oidc_token,
|
||
}
|
||
)
|
||
|
||
azure_ad_token_access_token = azure_ad_cache.get_cache(azure_ad_token_cache_key)
|
||
if azure_ad_token_access_token is not None:
|
||
return azure_ad_token_access_token
|
||
|
||
client = litellm.module_level_client
|
||
req_token = client.post(
|
||
f"{azure_authority_host}/{azure_tenant_id}/oauth2/v2.0/token",
|
||
data={
|
||
"client_id": azure_client_id,
|
||
"grant_type": "client_credentials",
|
||
"scope": "https://cognitiveservices.azure.com/.default",
|
||
"client_assertion_type": "urn:ietf:params:oauth:client-assertion-type:jwt-bearer",
|
||
"client_assertion": oidc_token,
|
||
},
|
||
)
|
||
|
||
if req_token.status_code != 200:
|
||
raise AzureOpenAIError(
|
||
status_code=req_token.status_code,
|
||
message=req_token.text,
|
||
)
|
||
|
||
azure_ad_token_json = req_token.json()
|
||
azure_ad_token_access_token = azure_ad_token_json.get("access_token", None)
|
||
azure_ad_token_expires_in = azure_ad_token_json.get("expires_in", None)
|
||
|
||
if azure_ad_token_access_token is None:
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="Azure AD Token access_token not returned"
|
||
)
|
||
|
||
if azure_ad_token_expires_in is None:
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="Azure AD Token expires_in not returned"
|
||
)
|
||
|
||
azure_ad_cache.set_cache(
|
||
key=azure_ad_token_cache_key,
|
||
value=azure_ad_token_access_token,
|
||
ttl=azure_ad_token_expires_in,
|
||
)
|
||
|
||
return azure_ad_token_access_token
|
||
|
||
|
||
def _check_dynamic_azure_params(
|
||
azure_client_params: dict,
|
||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]],
|
||
) -> bool:
|
||
"""
|
||
Returns True if user passed in client params != initialized azure client
|
||
|
||
Currently only implemented for api version
|
||
"""
|
||
if azure_client is None:
|
||
return True
|
||
|
||
dynamic_params = ["api_version"]
|
||
for k, v in azure_client_params.items():
|
||
if k in dynamic_params and k == "api_version":
|
||
if v is not None and v != azure_client._custom_query["api-version"]:
|
||
return True
|
||
|
||
return False
|
||
|
||
|
||
class AzureChatCompletion(BaseLLM):
|
||
def __init__(self) -> None:
|
||
super().__init__()
|
||
|
||
def validate_environment(self, api_key, azure_ad_token):
|
||
headers = {
|
||
"content-type": "application/json",
|
||
}
|
||
if api_key is not None:
|
||
headers["api-key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
headers["Authorization"] = f"Bearer {azure_ad_token}"
|
||
return headers
|
||
|
||
def _get_sync_azure_client(
|
||
self,
|
||
api_version: Optional[str],
|
||
api_base: Optional[str],
|
||
api_key: Optional[str],
|
||
azure_ad_token: Optional[str],
|
||
model: str,
|
||
max_retries: int,
|
||
timeout: Union[float, httpx.Timeout],
|
||
client: Optional[Any],
|
||
client_type: Literal["sync", "async"],
|
||
):
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"http_client": litellm.client_session,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
if client is None:
|
||
if client_type == "sync":
|
||
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
|
||
elif client_type == "async":
|
||
azure_client = AsyncAzureOpenAI(**azure_client_params) # type: ignore
|
||
else:
|
||
azure_client = client
|
||
if api_version is not None and isinstance(azure_client._custom_query, dict):
|
||
# set api_version to version passed by user
|
||
azure_client._custom_query.setdefault("api-version", api_version)
|
||
|
||
return azure_client
|
||
|
||
def make_sync_azure_openai_chat_completion_request(
|
||
self,
|
||
azure_client: AzureOpenAI,
|
||
data: dict,
|
||
timeout: Union[float, httpx.Timeout],
|
||
):
|
||
"""
|
||
Helper to:
|
||
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True
|
||
- call chat.completions.create by default
|
||
"""
|
||
try:
|
||
raw_response = azure_client.chat.completions.with_raw_response.create(
|
||
**data, timeout=timeout
|
||
)
|
||
|
||
headers = dict(raw_response.headers)
|
||
response = raw_response.parse()
|
||
return headers, response
|
||
except Exception as e:
|
||
raise e
|
||
|
||
async def make_azure_openai_chat_completion_request(
|
||
self,
|
||
azure_client: AsyncAzureOpenAI,
|
||
data: dict,
|
||
timeout: Union[float, httpx.Timeout],
|
||
):
|
||
"""
|
||
Helper to:
|
||
- call chat.completions.create.with_raw_response when litellm.return_response_headers is True
|
||
- call chat.completions.create by default
|
||
"""
|
||
try:
|
||
raw_response = await azure_client.chat.completions.with_raw_response.create(
|
||
**data, timeout=timeout
|
||
)
|
||
|
||
headers = dict(raw_response.headers)
|
||
response = raw_response.parse()
|
||
return headers, response
|
||
except Exception as e:
|
||
raise e
|
||
|
||
def completion(
|
||
self,
|
||
model: str,
|
||
messages: list,
|
||
model_response: ModelResponse,
|
||
api_key: str,
|
||
api_base: str,
|
||
api_version: str,
|
||
api_type: str,
|
||
azure_ad_token: str,
|
||
dynamic_params: bool,
|
||
print_verbose: Callable,
|
||
timeout: Union[float, httpx.Timeout],
|
||
logging_obj: LiteLLMLoggingObj,
|
||
optional_params,
|
||
litellm_params,
|
||
logger_fn,
|
||
acompletion: bool = False,
|
||
headers: Optional[dict] = None,
|
||
client=None,
|
||
):
|
||
super().completion()
|
||
try:
|
||
if model is None or messages is None:
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="Missing model or messages"
|
||
)
|
||
|
||
max_retries = optional_params.pop("max_retries", 2)
|
||
json_mode: Optional[bool] = optional_params.pop("json_mode", False)
|
||
|
||
### CHECK IF CLOUDFLARE AI GATEWAY ###
|
||
### if so - set the model as part of the base url
|
||
if "gateway.ai.cloudflare.com" in api_base:
|
||
## build base url - assume api base includes resource name
|
||
if client is None:
|
||
if not api_base.endswith("/"):
|
||
api_base += "/"
|
||
api_base += f"{model}"
|
||
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"base_url": f"{api_base}",
|
||
"http_client": litellm.client_session,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(
|
||
azure_ad_token
|
||
)
|
||
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
if acompletion is True:
|
||
client = AsyncAzureOpenAI(**azure_client_params)
|
||
else:
|
||
client = AzureOpenAI(**azure_client_params)
|
||
|
||
data = {"model": None, "messages": messages, **optional_params}
|
||
else:
|
||
data = {
|
||
"model": model, # type: ignore
|
||
"messages": messages,
|
||
**optional_params,
|
||
}
|
||
|
||
if acompletion is True:
|
||
if optional_params.get("stream", False):
|
||
return self.async_streaming(
|
||
logging_obj=logging_obj,
|
||
api_base=api_base,
|
||
dynamic_params=dynamic_params,
|
||
data=data,
|
||
model=model,
|
||
api_key=api_key,
|
||
api_version=api_version,
|
||
azure_ad_token=azure_ad_token,
|
||
timeout=timeout,
|
||
client=client,
|
||
)
|
||
else:
|
||
return self.acompletion(
|
||
api_base=api_base,
|
||
data=data,
|
||
model_response=model_response,
|
||
api_key=api_key,
|
||
api_version=api_version,
|
||
model=model,
|
||
azure_ad_token=azure_ad_token,
|
||
dynamic_params=dynamic_params,
|
||
timeout=timeout,
|
||
client=client,
|
||
logging_obj=logging_obj,
|
||
convert_tool_call_to_json_mode=json_mode,
|
||
)
|
||
elif "stream" in optional_params and optional_params["stream"] is True:
|
||
return self.streaming(
|
||
logging_obj=logging_obj,
|
||
api_base=api_base,
|
||
dynamic_params=dynamic_params,
|
||
data=data,
|
||
model=model,
|
||
api_key=api_key,
|
||
api_version=api_version,
|
||
azure_ad_token=azure_ad_token,
|
||
timeout=timeout,
|
||
client=client,
|
||
)
|
||
else:
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=messages,
|
||
api_key=api_key,
|
||
additional_args={
|
||
"headers": {
|
||
"api_key": api_key,
|
||
"azure_ad_token": azure_ad_token,
|
||
},
|
||
"api_version": api_version,
|
||
"api_base": api_base,
|
||
"complete_input_dict": data,
|
||
},
|
||
)
|
||
if not isinstance(max_retries, int):
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="max retries must be an int"
|
||
)
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"http_client": litellm.client_session,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
if (
|
||
client is None
|
||
or not isinstance(client, AzureOpenAI)
|
||
or dynamic_params
|
||
):
|
||
azure_client = AzureOpenAI(**azure_client_params)
|
||
else:
|
||
azure_client = client
|
||
if api_version is not None and isinstance(
|
||
azure_client._custom_query, dict
|
||
):
|
||
# set api_version to version passed by user
|
||
azure_client._custom_query.setdefault(
|
||
"api-version", api_version
|
||
)
|
||
if not isinstance(azure_client, AzureOpenAI):
|
||
raise AzureOpenAIError(
|
||
status_code=500,
|
||
message="azure_client is not an instance of AzureOpenAI",
|
||
)
|
||
|
||
headers, response = self.make_sync_azure_openai_chat_completion_request(
|
||
azure_client=azure_client, data=data, timeout=timeout
|
||
)
|
||
stringified_response = response.model_dump()
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=messages,
|
||
api_key=api_key,
|
||
original_response=stringified_response,
|
||
additional_args={
|
||
"headers": headers,
|
||
"api_version": api_version,
|
||
"api_base": api_base,
|
||
},
|
||
)
|
||
return convert_to_model_response_object(
|
||
response_object=stringified_response,
|
||
model_response_object=model_response,
|
||
convert_tool_call_to_json_mode=json_mode,
|
||
_response_headers=headers,
|
||
)
|
||
except AzureOpenAIError as e:
|
||
raise e
|
||
except Exception as e:
|
||
status_code = getattr(e, "status_code", 500)
|
||
error_headers = getattr(e, "headers", None)
|
||
error_response = getattr(e, "response", None)
|
||
if error_headers is None and error_response:
|
||
error_headers = getattr(error_response, "headers", None)
|
||
raise AzureOpenAIError(
|
||
status_code=status_code, message=str(e), headers=error_headers
|
||
)
|
||
|
||
async def acompletion(
|
||
self,
|
||
api_key: str,
|
||
api_version: str,
|
||
model: str,
|
||
api_base: str,
|
||
data: dict,
|
||
timeout: Any,
|
||
dynamic_params: bool,
|
||
model_response: ModelResponse,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
azure_ad_token: Optional[str] = None,
|
||
convert_tool_call_to_json_mode: Optional[bool] = None,
|
||
client=None, # this is the AsyncAzureOpenAI
|
||
):
|
||
response = None
|
||
try:
|
||
max_retries = data.pop("max_retries", 2)
|
||
if not isinstance(max_retries, int):
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="max retries must be an int"
|
||
)
|
||
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"http_client": litellm.aclient_session,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
# setting Azure client
|
||
if client is None or dynamic_params:
|
||
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
||
else:
|
||
azure_client = client
|
||
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=data["messages"],
|
||
api_key=azure_client.api_key,
|
||
additional_args={
|
||
"headers": {
|
||
"api_key": api_key,
|
||
"azure_ad_token": azure_ad_token,
|
||
},
|
||
"api_base": azure_client._base_url._uri_reference,
|
||
"acompletion": True,
|
||
"complete_input_dict": data,
|
||
},
|
||
)
|
||
|
||
headers, response = await self.make_azure_openai_chat_completion_request(
|
||
azure_client=azure_client,
|
||
data=data,
|
||
timeout=timeout,
|
||
)
|
||
logging_obj.model_call_details["response_headers"] = headers
|
||
|
||
stringified_response = response.model_dump()
|
||
logging_obj.post_call(
|
||
input=data["messages"],
|
||
api_key=api_key,
|
||
original_response=stringified_response,
|
||
additional_args={"complete_input_dict": data},
|
||
)
|
||
|
||
return convert_to_model_response_object(
|
||
response_object=stringified_response,
|
||
model_response_object=model_response,
|
||
hidden_params={"headers": headers},
|
||
_response_headers=headers,
|
||
convert_tool_call_to_json_mode=convert_tool_call_to_json_mode,
|
||
)
|
||
except AzureOpenAIError as e:
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=data["messages"],
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=str(e),
|
||
)
|
||
raise e
|
||
except asyncio.CancelledError as e:
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=data["messages"],
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=str(e),
|
||
)
|
||
raise AzureOpenAIError(status_code=500, message=str(e))
|
||
except Exception as e:
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=data["messages"],
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=str(e),
|
||
)
|
||
if hasattr(e, "status_code"):
|
||
raise e
|
||
else:
|
||
raise AzureOpenAIError(status_code=500, message=str(e))
|
||
|
||
def streaming(
|
||
self,
|
||
logging_obj,
|
||
api_base: str,
|
||
api_key: str,
|
||
api_version: str,
|
||
dynamic_params: bool,
|
||
data: dict,
|
||
model: str,
|
||
timeout: Any,
|
||
azure_ad_token: Optional[str] = None,
|
||
client=None,
|
||
):
|
||
max_retries = data.pop("max_retries", 2)
|
||
if not isinstance(max_retries, int):
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="max retries must be an int"
|
||
)
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"http_client": litellm.client_session,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
if client is None or dynamic_params:
|
||
azure_client = AzureOpenAI(**azure_client_params)
|
||
else:
|
||
azure_client = client
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=data["messages"],
|
||
api_key=azure_client.api_key,
|
||
additional_args={
|
||
"headers": {
|
||
"api_key": api_key,
|
||
"azure_ad_token": azure_ad_token,
|
||
},
|
||
"api_base": azure_client._base_url._uri_reference,
|
||
"acompletion": True,
|
||
"complete_input_dict": data,
|
||
},
|
||
)
|
||
headers, response = self.make_sync_azure_openai_chat_completion_request(
|
||
azure_client=azure_client, data=data, timeout=timeout
|
||
)
|
||
streamwrapper = CustomStreamWrapper(
|
||
completion_stream=response,
|
||
model=model,
|
||
custom_llm_provider="azure",
|
||
logging_obj=logging_obj,
|
||
_response_headers=process_azure_headers(headers),
|
||
)
|
||
return streamwrapper
|
||
|
||
async def async_streaming(
|
||
self,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
api_base: str,
|
||
api_key: str,
|
||
api_version: str,
|
||
dynamic_params: bool,
|
||
data: dict,
|
||
model: str,
|
||
timeout: Any,
|
||
azure_ad_token: Optional[str] = None,
|
||
client=None,
|
||
):
|
||
try:
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"http_client": litellm.aclient_session,
|
||
"max_retries": data.pop("max_retries", 2),
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
if client is None or dynamic_params:
|
||
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
||
else:
|
||
azure_client = client
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=data["messages"],
|
||
api_key=azure_client.api_key,
|
||
additional_args={
|
||
"headers": {
|
||
"api_key": api_key,
|
||
"azure_ad_token": azure_ad_token,
|
||
},
|
||
"api_base": azure_client._base_url._uri_reference,
|
||
"acompletion": True,
|
||
"complete_input_dict": data,
|
||
},
|
||
)
|
||
|
||
headers, response = await self.make_azure_openai_chat_completion_request(
|
||
azure_client=azure_client,
|
||
data=data,
|
||
timeout=timeout,
|
||
)
|
||
logging_obj.model_call_details["response_headers"] = headers
|
||
|
||
# return response
|
||
streamwrapper = CustomStreamWrapper(
|
||
completion_stream=response,
|
||
model=model,
|
||
custom_llm_provider="azure",
|
||
logging_obj=logging_obj,
|
||
_response_headers=headers,
|
||
)
|
||
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
|
||
except Exception as e:
|
||
status_code = getattr(e, "status_code", 500)
|
||
error_headers = getattr(e, "headers", None)
|
||
error_response = getattr(e, "response", None)
|
||
if error_headers is None and error_response:
|
||
error_headers = getattr(error_response, "headers", None)
|
||
raise AzureOpenAIError(
|
||
status_code=status_code, message=str(e), headers=error_headers
|
||
)
|
||
|
||
async def aembedding(
|
||
self,
|
||
data: dict,
|
||
model_response: EmbeddingResponse,
|
||
azure_client_params: dict,
|
||
input: list,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
api_key: Optional[str] = None,
|
||
client: Optional[AsyncAzureOpenAI] = None,
|
||
timeout=None,
|
||
):
|
||
response = None
|
||
try:
|
||
if client is None:
|
||
openai_aclient = AsyncAzureOpenAI(**azure_client_params)
|
||
else:
|
||
openai_aclient = client
|
||
raw_response = await openai_aclient.embeddings.with_raw_response.create(
|
||
**data, timeout=timeout
|
||
)
|
||
headers = dict(raw_response.headers)
|
||
response = raw_response.parse()
|
||
stringified_response = response.model_dump()
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=stringified_response,
|
||
)
|
||
return convert_to_model_response_object(
|
||
response_object=stringified_response,
|
||
model_response_object=model_response,
|
||
hidden_params={"headers": headers},
|
||
_response_headers=process_azure_headers(headers),
|
||
response_type="embedding",
|
||
)
|
||
except Exception as e:
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=str(e),
|
||
)
|
||
raise e
|
||
|
||
def embedding(
|
||
self,
|
||
model: str,
|
||
input: list,
|
||
api_base: str,
|
||
api_version: str,
|
||
timeout: float,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
model_response: EmbeddingResponse,
|
||
optional_params: dict,
|
||
api_key: Optional[str] = None,
|
||
azure_ad_token: Optional[str] = None,
|
||
client=None,
|
||
aembedding=None,
|
||
):
|
||
super().embedding()
|
||
if self._client_session is None:
|
||
self._client_session = self.create_client_session()
|
||
try:
|
||
data = {"model": model, "input": input, **optional_params}
|
||
max_retries = data.pop("max_retries", 2)
|
||
if not isinstance(max_retries, int):
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="max retries must be an int"
|
||
)
|
||
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if aembedding:
|
||
azure_client_params["http_client"] = litellm.aclient_session
|
||
else:
|
||
azure_client_params["http_client"] = litellm.client_session
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={
|
||
"complete_input_dict": data,
|
||
"headers": {"api_key": api_key, "azure_ad_token": azure_ad_token},
|
||
},
|
||
)
|
||
|
||
if aembedding is True:
|
||
response = self.aembedding(
|
||
data=data,
|
||
input=input,
|
||
logging_obj=logging_obj,
|
||
api_key=api_key,
|
||
model_response=model_response,
|
||
azure_client_params=azure_client_params,
|
||
timeout=timeout,
|
||
client=client,
|
||
)
|
||
return response
|
||
if client is None:
|
||
azure_client = AzureOpenAI(**azure_client_params) # type: ignore
|
||
else:
|
||
azure_client = client
|
||
## COMPLETION CALL
|
||
raw_response = azure_client.embeddings.with_raw_response.create(**data, timeout=timeout) # type: ignore
|
||
headers = dict(raw_response.headers)
|
||
response = raw_response.parse()
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data, "api_base": api_base},
|
||
original_response=response,
|
||
)
|
||
|
||
return convert_to_model_response_object(response_object=response.model_dump(), model_response_object=model_response, response_type="embedding", _response_headers=process_azure_headers(headers)) # type: ignore
|
||
except AzureOpenAIError as e:
|
||
raise e
|
||
except Exception as e:
|
||
status_code = getattr(e, "status_code", 500)
|
||
error_headers = getattr(e, "headers", None)
|
||
error_response = getattr(e, "response", None)
|
||
if error_headers is None and error_response:
|
||
error_headers = getattr(error_response, "headers", None)
|
||
raise AzureOpenAIError(
|
||
status_code=status_code, message=str(e), headers=error_headers
|
||
)
|
||
|
||
async def make_async_azure_httpx_request(
|
||
self,
|
||
client: Optional[AsyncHTTPHandler],
|
||
timeout: Optional[Union[float, httpx.Timeout]],
|
||
api_base: str,
|
||
api_version: str,
|
||
api_key: str,
|
||
data: dict,
|
||
) -> httpx.Response:
|
||
"""
|
||
Implemented for azure dall-e-2 image gen calls
|
||
|
||
Alternative to needing a custom transport implementation
|
||
"""
|
||
if client is None:
|
||
_params = {}
|
||
if timeout is not None:
|
||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||
_httpx_timeout = httpx.Timeout(timeout)
|
||
_params["timeout"] = _httpx_timeout
|
||
else:
|
||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
||
|
||
async_handler = AsyncHTTPHandler(**_params) # type: ignore
|
||
else:
|
||
async_handler = client # type: ignore
|
||
|
||
if (
|
||
"images/generations" in api_base
|
||
and api_version
|
||
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
|
||
"2023-06-01-preview",
|
||
"2023-07-01-preview",
|
||
"2023-08-01-preview",
|
||
"2023-09-01-preview",
|
||
"2023-10-01-preview",
|
||
]
|
||
): # CREATE + POLL for azure dall-e-2 calls
|
||
|
||
api_base = modify_url(
|
||
original_url=api_base, new_path="/openai/images/generations:submit"
|
||
)
|
||
|
||
data.pop(
|
||
"model", None
|
||
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
|
||
response = await async_handler.post(
|
||
url=api_base,
|
||
data=json.dumps(data),
|
||
headers={
|
||
"Content-Type": "application/json",
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
if "operation-location" in response.headers:
|
||
operation_location_url = response.headers["operation-location"]
|
||
else:
|
||
raise AzureOpenAIError(status_code=500, message=response.text)
|
||
response = await async_handler.get(
|
||
url=operation_location_url,
|
||
headers={
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
|
||
await response.aread()
|
||
|
||
timeout_secs: int = 120
|
||
start_time = time.time()
|
||
if "status" not in response.json():
|
||
raise Exception(
|
||
"Expected 'status' in response. Got={}".format(response.json())
|
||
)
|
||
while response.json()["status"] not in ["succeeded", "failed"]:
|
||
if time.time() - start_time > timeout_secs:
|
||
|
||
raise AzureOpenAIError(
|
||
status_code=408, message="Operation polling timed out."
|
||
)
|
||
|
||
await asyncio.sleep(int(response.headers.get("retry-after") or 10))
|
||
response = await async_handler.get(
|
||
url=operation_location_url,
|
||
headers={
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
await response.aread()
|
||
|
||
if response.json()["status"] == "failed":
|
||
error_data = response.json()
|
||
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
|
||
|
||
result = response.json()["result"]
|
||
return httpx.Response(
|
||
status_code=200,
|
||
headers=response.headers,
|
||
content=json.dumps(result).encode("utf-8"),
|
||
request=httpx.Request(method="POST", url="https://api.openai.com/v1"),
|
||
)
|
||
return await async_handler.post(
|
||
url=api_base,
|
||
json=data,
|
||
headers={
|
||
"Content-Type": "application/json;",
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
|
||
def make_sync_azure_httpx_request(
|
||
self,
|
||
client: Optional[HTTPHandler],
|
||
timeout: Optional[Union[float, httpx.Timeout]],
|
||
api_base: str,
|
||
api_version: str,
|
||
api_key: str,
|
||
data: dict,
|
||
) -> httpx.Response:
|
||
"""
|
||
Implemented for azure dall-e-2 image gen calls
|
||
|
||
Alternative to needing a custom transport implementation
|
||
"""
|
||
if client is None:
|
||
_params = {}
|
||
if timeout is not None:
|
||
if isinstance(timeout, float) or isinstance(timeout, int):
|
||
_httpx_timeout = httpx.Timeout(timeout)
|
||
_params["timeout"] = _httpx_timeout
|
||
else:
|
||
_params["timeout"] = httpx.Timeout(timeout=600.0, connect=5.0)
|
||
|
||
sync_handler = HTTPHandler(**_params) # type: ignore
|
||
else:
|
||
sync_handler = client # type: ignore
|
||
|
||
if (
|
||
"images/generations" in api_base
|
||
and api_version
|
||
in [ # dall-e-3 starts from `2023-12-01-preview` so we should be able to avoid conflict
|
||
"2023-06-01-preview",
|
||
"2023-07-01-preview",
|
||
"2023-08-01-preview",
|
||
"2023-09-01-preview",
|
||
"2023-10-01-preview",
|
||
]
|
||
): # CREATE + POLL for azure dall-e-2 calls
|
||
|
||
api_base = modify_url(
|
||
original_url=api_base, new_path="/openai/images/generations:submit"
|
||
)
|
||
|
||
data.pop(
|
||
"model", None
|
||
) # REMOVE 'model' from dall-e-2 arg https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#request-a-generated-image-dall-e-2-preview
|
||
response = sync_handler.post(
|
||
url=api_base,
|
||
data=json.dumps(data),
|
||
headers={
|
||
"Content-Type": "application/json",
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
if "operation-location" in response.headers:
|
||
operation_location_url = response.headers["operation-location"]
|
||
else:
|
||
raise AzureOpenAIError(status_code=500, message=response.text)
|
||
response = sync_handler.get(
|
||
url=operation_location_url,
|
||
headers={
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
|
||
response.read()
|
||
|
||
timeout_secs: int = 120
|
||
start_time = time.time()
|
||
if "status" not in response.json():
|
||
raise Exception(
|
||
"Expected 'status' in response. Got={}".format(response.json())
|
||
)
|
||
while response.json()["status"] not in ["succeeded", "failed"]:
|
||
if time.time() - start_time > timeout_secs:
|
||
raise AzureOpenAIError(
|
||
status_code=408, message="Operation polling timed out."
|
||
)
|
||
|
||
time.sleep(int(response.headers.get("retry-after") or 10))
|
||
response = sync_handler.get(
|
||
url=operation_location_url,
|
||
headers={
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
response.read()
|
||
|
||
if response.json()["status"] == "failed":
|
||
error_data = response.json()
|
||
raise AzureOpenAIError(status_code=400, message=json.dumps(error_data))
|
||
|
||
result = response.json()["result"]
|
||
return httpx.Response(
|
||
status_code=200,
|
||
headers=response.headers,
|
||
content=json.dumps(result).encode("utf-8"),
|
||
request=httpx.Request(method="POST", url="https://api.openai.com/v1"),
|
||
)
|
||
return sync_handler.post(
|
||
url=api_base,
|
||
json=data,
|
||
headers={
|
||
"Content-Type": "application/json;",
|
||
"api-key": api_key,
|
||
},
|
||
)
|
||
|
||
def create_azure_base_url(
|
||
self, azure_client_params: dict, model: Optional[str]
|
||
) -> str:
|
||
|
||
api_base: str = azure_client_params.get(
|
||
"azure_endpoint", ""
|
||
) # "https://example-endpoint.openai.azure.com"
|
||
if api_base.endswith("/"):
|
||
api_base = api_base.rstrip("/")
|
||
api_version: str = azure_client_params.get("api_version", "")
|
||
if model is None:
|
||
model = ""
|
||
new_api_base = (
|
||
api_base
|
||
+ "/openai/deployments/"
|
||
+ model
|
||
+ "/images/generations"
|
||
+ "?api-version="
|
||
+ api_version
|
||
)
|
||
|
||
return new_api_base
|
||
|
||
async def aimage_generation(
|
||
self,
|
||
data: dict,
|
||
model_response: ModelResponse,
|
||
azure_client_params: dict,
|
||
api_key: str,
|
||
input: list,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
client=None,
|
||
timeout=None,
|
||
):
|
||
response: Optional[dict] = None
|
||
try:
|
||
# response = await azure_client.images.generate(**data, timeout=timeout)
|
||
api_base: str = azure_client_params.get(
|
||
"api_base", ""
|
||
) # "https://example-endpoint.openai.azure.com"
|
||
if api_base.endswith("/"):
|
||
api_base = api_base.rstrip("/")
|
||
api_version: str = azure_client_params.get("api_version", "")
|
||
img_gen_api_base = self.create_azure_base_url(
|
||
azure_client_params=azure_client_params, model=data.get("model", "")
|
||
)
|
||
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=data["prompt"],
|
||
api_key=api_key,
|
||
additional_args={
|
||
"complete_input_dict": data,
|
||
"api_base": img_gen_api_base,
|
||
"headers": {"api_key": api_key},
|
||
},
|
||
)
|
||
httpx_response: httpx.Response = await self.make_async_azure_httpx_request(
|
||
client=None,
|
||
timeout=timeout,
|
||
api_base=img_gen_api_base,
|
||
api_version=api_version,
|
||
api_key=api_key,
|
||
data=data,
|
||
)
|
||
response = httpx_response.json()
|
||
|
||
stringified_response = response
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=stringified_response,
|
||
)
|
||
return convert_to_model_response_object(
|
||
response_object=stringified_response,
|
||
model_response_object=model_response,
|
||
response_type="image_generation",
|
||
)
|
||
except Exception as e:
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=input,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=str(e),
|
||
)
|
||
raise e
|
||
|
||
def image_generation(
|
||
self,
|
||
prompt: str,
|
||
timeout: float,
|
||
optional_params: dict,
|
||
logging_obj: LiteLLMLoggingObj,
|
||
model: Optional[str] = None,
|
||
api_key: Optional[str] = None,
|
||
api_base: Optional[str] = None,
|
||
api_version: Optional[str] = None,
|
||
model_response: Optional[litellm.utils.ImageResponse] = None,
|
||
azure_ad_token: Optional[str] = None,
|
||
client=None,
|
||
aimg_generation=None,
|
||
):
|
||
try:
|
||
if model and len(model) > 0:
|
||
model = model
|
||
else:
|
||
model = None
|
||
|
||
## BASE MODEL CHECK
|
||
if (
|
||
model_response is not None
|
||
and optional_params.get("base_model", None) is not None
|
||
):
|
||
model_response._hidden_params["model"] = optional_params.pop(
|
||
"base_model"
|
||
)
|
||
|
||
data = {"model": model, "prompt": prompt, **optional_params}
|
||
max_retries = data.pop("max_retries", 2)
|
||
if not isinstance(max_retries, int):
|
||
raise AzureOpenAIError(
|
||
status_code=422, message="max retries must be an int"
|
||
)
|
||
|
||
# init AzureOpenAI Client
|
||
azure_client_params = {
|
||
"api_version": api_version,
|
||
"azure_endpoint": api_base,
|
||
"azure_deployment": model,
|
||
"max_retries": max_retries,
|
||
"timeout": timeout,
|
||
}
|
||
azure_client_params = select_azure_base_url_or_endpoint(
|
||
azure_client_params=azure_client_params
|
||
)
|
||
if api_key is not None:
|
||
azure_client_params["api_key"] = api_key
|
||
elif azure_ad_token is not None:
|
||
if azure_ad_token.startswith("oidc/"):
|
||
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
|
||
azure_client_params["azure_ad_token"] = azure_ad_token
|
||
|
||
if aimg_generation is True:
|
||
response = self.aimage_generation(data=data, input=input, logging_obj=logging_obj, model_response=model_response, api_key=api_key, client=client, azure_client_params=azure_client_params, timeout=timeout) # type: ignore
|
||
return response
|
||
|
||
img_gen_api_base = self.create_azure_base_url(
|
||
azure_client_params=azure_client_params, model=data.get("model", "")
|
||
)
|
||
|
||
## LOGGING
|
||
logging_obj.pre_call(
|
||
input=data["prompt"],
|
||
api_key=api_key,
|
||
additional_args={
|
||
"complete_input_dict": data,
|
||
"api_base": img_gen_api_base,
|
||
"headers": {"api_key": api_key},
|
||
},
|
||
)
|
||
httpx_response: httpx.Response = self.make_sync_azure_httpx_request(
|
||
client=None,
|
||
timeout=timeout,
|
||
api_base=img_gen_api_base,
|
||
api_version=api_version or "",
|
||
api_key=api_key or "",
|
||
data=data,
|
||
)
|
||
response = httpx_response.json()
|
||
|
||
## LOGGING
|
||
logging_obj.post_call(
|
||
input=prompt,
|
||
api_key=api_key,
|
||
additional_args={"complete_input_dict": data},
|
||
original_response=response,
|
||
)
|
||
# return response
|
||
return convert_to_model_response_object(response_object=response, model_response_object=model_response, response_type="image_generation") # type: ignore
|
||
except AzureOpenAIError as e:
|
||
raise e
|
||
except Exception as e:
|
||
error_code = getattr(e, "status_code", None)
|
||
if error_code is not None:
|
||
raise AzureOpenAIError(status_code=error_code, message=str(e))
|
||
else:
|
||
raise AzureOpenAIError(status_code=500, message=str(e))
|
||
|
||
def audio_speech(
|
||
self,
|
||
model: str,
|
||
input: str,
|
||
voice: str,
|
||
optional_params: dict,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
api_version: Optional[str],
|
||
organization: Optional[str],
|
||
max_retries: int,
|
||
timeout: Union[float, httpx.Timeout],
|
||
azure_ad_token: Optional[str] = None,
|
||
aspeech: Optional[bool] = None,
|
||
client=None,
|
||
) -> HttpxBinaryResponseContent:
|
||
|
||
max_retries = optional_params.pop("max_retries", 2)
|
||
|
||
if aspeech is not None and aspeech is True:
|
||
return self.async_audio_speech(
|
||
model=model,
|
||
input=input,
|
||
voice=voice,
|
||
optional_params=optional_params,
|
||
api_key=api_key,
|
||
api_base=api_base,
|
||
api_version=api_version,
|
||
azure_ad_token=azure_ad_token,
|
||
max_retries=max_retries,
|
||
timeout=timeout,
|
||
client=client,
|
||
) # type: ignore
|
||
|
||
azure_client: AzureOpenAI = self._get_sync_azure_client(
|
||
api_base=api_base,
|
||
api_version=api_version,
|
||
api_key=api_key,
|
||
azure_ad_token=azure_ad_token,
|
||
model=model,
|
||
max_retries=max_retries,
|
||
timeout=timeout,
|
||
client=client,
|
||
client_type="sync",
|
||
) # type: ignore
|
||
|
||
response = azure_client.audio.speech.create(
|
||
model=model,
|
||
voice=voice, # type: ignore
|
||
input=input,
|
||
**optional_params,
|
||
)
|
||
return response
|
||
|
||
async def async_audio_speech(
|
||
self,
|
||
model: str,
|
||
input: str,
|
||
voice: str,
|
||
optional_params: dict,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
api_version: Optional[str],
|
||
azure_ad_token: Optional[str],
|
||
max_retries: int,
|
||
timeout: Union[float, httpx.Timeout],
|
||
client=None,
|
||
) -> HttpxBinaryResponseContent:
|
||
|
||
azure_client: AsyncAzureOpenAI = self._get_sync_azure_client(
|
||
api_base=api_base,
|
||
api_version=api_version,
|
||
api_key=api_key,
|
||
azure_ad_token=azure_ad_token,
|
||
model=model,
|
||
max_retries=max_retries,
|
||
timeout=timeout,
|
||
client=client,
|
||
client_type="async",
|
||
) # type: ignore
|
||
|
||
response = await azure_client.audio.speech.create(
|
||
model=model,
|
||
voice=voice, # type: ignore
|
||
input=input,
|
||
**optional_params,
|
||
)
|
||
|
||
return response
|
||
|
||
def get_headers(
|
||
self,
|
||
model: Optional[str],
|
||
api_key: str,
|
||
api_base: str,
|
||
api_version: str,
|
||
timeout: float,
|
||
mode: str,
|
||
messages: Optional[list] = None,
|
||
input: Optional[list] = None,
|
||
prompt: Optional[str] = None,
|
||
) -> dict:
|
||
client_session = litellm.client_session or httpx.Client()
|
||
if "gateway.ai.cloudflare.com" in api_base:
|
||
## build base url - assume api base includes resource name
|
||
if not api_base.endswith("/"):
|
||
api_base += "/"
|
||
api_base += f"{model}"
|
||
client = AzureOpenAI(
|
||
base_url=api_base,
|
||
api_version=api_version,
|
||
api_key=api_key,
|
||
timeout=timeout,
|
||
http_client=client_session,
|
||
)
|
||
model = None
|
||
# cloudflare ai gateway, needs model=None
|
||
else:
|
||
client = AzureOpenAI(
|
||
api_version=api_version,
|
||
azure_endpoint=api_base,
|
||
api_key=api_key,
|
||
timeout=timeout,
|
||
http_client=client_session,
|
||
)
|
||
|
||
# only run this check if it's not cloudflare ai gateway
|
||
if model is None and mode != "image_generation":
|
||
raise Exception("model is not set")
|
||
|
||
completion = None
|
||
|
||
if messages is None:
|
||
messages = [{"role": "user", "content": "Hey"}]
|
||
try:
|
||
completion = client.chat.completions.with_raw_response.create(
|
||
model=model, # type: ignore
|
||
messages=messages, # type: ignore
|
||
)
|
||
except Exception as e:
|
||
raise e
|
||
response = {}
|
||
|
||
if completion is None or not hasattr(completion, "headers"):
|
||
raise Exception("invalid completion response")
|
||
|
||
if (
|
||
completion.headers.get("x-ratelimit-remaining-requests", None) is not None
|
||
): # not provided for dall-e requests
|
||
response["x-ratelimit-remaining-requests"] = completion.headers[
|
||
"x-ratelimit-remaining-requests"
|
||
]
|
||
|
||
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None:
|
||
response["x-ratelimit-remaining-tokens"] = completion.headers[
|
||
"x-ratelimit-remaining-tokens"
|
||
]
|
||
|
||
if completion.headers.get("x-ms-region", None) is not None:
|
||
response["x-ms-region"] = completion.headers["x-ms-region"]
|
||
|
||
return response
|
||
|
||
async def ahealth_check(
|
||
self,
|
||
model: Optional[str],
|
||
api_key: str,
|
||
api_base: str,
|
||
api_version: str,
|
||
timeout: float,
|
||
mode: str,
|
||
messages: Optional[list] = None,
|
||
input: Optional[list] = None,
|
||
prompt: Optional[str] = None,
|
||
) -> dict:
|
||
client_session = (
|
||
litellm.aclient_session or httpx.AsyncClient()
|
||
) # handle dall-e-2 calls
|
||
|
||
if "gateway.ai.cloudflare.com" in api_base:
|
||
## build base url - assume api base includes resource name
|
||
if not api_base.endswith("/"):
|
||
api_base += "/"
|
||
api_base += f"{model}"
|
||
client = AsyncAzureOpenAI(
|
||
base_url=api_base,
|
||
api_version=api_version,
|
||
api_key=api_key,
|
||
timeout=timeout,
|
||
http_client=client_session,
|
||
)
|
||
model = None
|
||
# cloudflare ai gateway, needs model=None
|
||
else:
|
||
client = AsyncAzureOpenAI(
|
||
api_version=api_version,
|
||
azure_endpoint=api_base,
|
||
api_key=api_key,
|
||
timeout=timeout,
|
||
http_client=client_session,
|
||
)
|
||
|
||
# only run this check if it's not cloudflare ai gateway
|
||
if model is None and mode != "image_generation":
|
||
raise Exception("model is not set")
|
||
|
||
completion = None
|
||
|
||
if mode == "completion":
|
||
completion = await client.completions.with_raw_response.create(
|
||
model=model, # type: ignore
|
||
prompt=prompt, # type: ignore
|
||
)
|
||
elif mode == "chat":
|
||
if messages is None:
|
||
raise Exception("messages is not set")
|
||
completion = await client.chat.completions.with_raw_response.create(
|
||
model=model, # type: ignore
|
||
messages=messages, # type: ignore
|
||
)
|
||
elif mode == "embedding":
|
||
if input is None:
|
||
raise Exception("input is not set")
|
||
completion = await client.embeddings.with_raw_response.create(
|
||
model=model, # type: ignore
|
||
input=input, # type: ignore
|
||
)
|
||
elif mode == "image_generation":
|
||
if prompt is None:
|
||
raise Exception("prompt is not set")
|
||
completion = await client.images.with_raw_response.generate(
|
||
model=model, # type: ignore
|
||
prompt=prompt, # type: ignore
|
||
)
|
||
elif mode == "audio_transcription":
|
||
# Get the current directory of the file being run
|
||
pwd = os.path.dirname(os.path.realpath(__file__))
|
||
file_path = os.path.join(pwd, "../tests/gettysburg.wav")
|
||
audio_file = open(file_path, "rb")
|
||
completion = await client.audio.transcriptions.with_raw_response.create(
|
||
file=audio_file,
|
||
model=model, # type: ignore
|
||
prompt=prompt, # type: ignore
|
||
)
|
||
elif mode == "audio_speech":
|
||
# Get the current directory of the file being run
|
||
completion = await client.audio.speech.with_raw_response.create(
|
||
model=model, # type: ignore
|
||
input=prompt, # type: ignore
|
||
voice="alloy",
|
||
)
|
||
elif mode == "batch":
|
||
completion = await client.batches.with_raw_response.list(limit=1) # type: ignore
|
||
else:
|
||
raise Exception("mode not set")
|
||
response = {}
|
||
|
||
if completion is None or not hasattr(completion, "headers"):
|
||
raise Exception("invalid completion response")
|
||
|
||
if (
|
||
completion.headers.get("x-ratelimit-remaining-requests", None) is not None
|
||
): # not provided for dall-e requests
|
||
response["x-ratelimit-remaining-requests"] = completion.headers[
|
||
"x-ratelimit-remaining-requests"
|
||
]
|
||
|
||
if completion.headers.get("x-ratelimit-remaining-tokens", None) is not None:
|
||
response["x-ratelimit-remaining-tokens"] = completion.headers[
|
||
"x-ratelimit-remaining-tokens"
|
||
]
|
||
|
||
if completion.headers.get("x-ms-region", None) is not None:
|
||
response["x-ms-region"] = completion.headers["x-ms-region"]
|
||
|
||
return response
|
||
|
||
|
||
class AzureBatchesAPI(BaseLLM):
|
||
"""
|
||
Azure methods to support for batches
|
||
- create_batch()
|
||
- retrieve_batch()
|
||
- cancel_batch()
|
||
- list_batch()
|
||
"""
|
||
|
||
def __init__(self) -> None:
|
||
super().__init__()
|
||
|
||
def get_azure_openai_client(
|
||
self,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
timeout: Union[float, httpx.Timeout],
|
||
max_retries: Optional[int],
|
||
api_version: Optional[str] = None,
|
||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||
_is_async: bool = False,
|
||
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
||
received_args = locals()
|
||
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
||
if client is None:
|
||
data = {}
|
||
for k, v in received_args.items():
|
||
if k == "self" or k == "client" or k == "_is_async":
|
||
pass
|
||
elif k == "api_base" and v is not None:
|
||
data["azure_endpoint"] = v
|
||
elif v is not None:
|
||
data[k] = v
|
||
if "api_version" not in data:
|
||
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
|
||
if _is_async is True:
|
||
openai_client = AsyncAzureOpenAI(**data)
|
||
else:
|
||
openai_client = AzureOpenAI(**data) # type: ignore
|
||
else:
|
||
openai_client = client
|
||
|
||
return openai_client
|
||
|
||
async def acreate_batch(
|
||
self,
|
||
create_batch_data: CreateBatchRequest,
|
||
azure_client: AsyncAzureOpenAI,
|
||
) -> Batch:
|
||
response = await azure_client.batches.create(**create_batch_data)
|
||
return response
|
||
|
||
def create_batch(
|
||
self,
|
||
_is_async: bool,
|
||
create_batch_data: CreateBatchRequest,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
api_version: Optional[str],
|
||
timeout: Union[float, httpx.Timeout],
|
||
max_retries: Optional[int],
|
||
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
||
) -> Union[Batch, Coroutine[Any, Any, Batch]]:
|
||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||
self.get_azure_openai_client(
|
||
api_key=api_key,
|
||
api_base=api_base,
|
||
timeout=timeout,
|
||
api_version=api_version,
|
||
max_retries=max_retries,
|
||
client=client,
|
||
_is_async=_is_async,
|
||
)
|
||
)
|
||
if azure_client is None:
|
||
raise ValueError(
|
||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||
)
|
||
|
||
if _is_async is True:
|
||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||
raise ValueError(
|
||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||
)
|
||
return self.acreate_batch( # type: ignore
|
||
create_batch_data=create_batch_data, azure_client=azure_client
|
||
)
|
||
response = azure_client.batches.create(**create_batch_data)
|
||
return response
|
||
|
||
async def aretrieve_batch(
|
||
self,
|
||
retrieve_batch_data: RetrieveBatchRequest,
|
||
client: AsyncAzureOpenAI,
|
||
) -> Batch:
|
||
response = await client.batches.retrieve(**retrieve_batch_data)
|
||
return response
|
||
|
||
def retrieve_batch(
|
||
self,
|
||
_is_async: bool,
|
||
retrieve_batch_data: RetrieveBatchRequest,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
api_version: Optional[str],
|
||
timeout: Union[float, httpx.Timeout],
|
||
max_retries: Optional[int],
|
||
client: Optional[AzureOpenAI] = None,
|
||
):
|
||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||
self.get_azure_openai_client(
|
||
api_key=api_key,
|
||
api_base=api_base,
|
||
api_version=api_version,
|
||
timeout=timeout,
|
||
max_retries=max_retries,
|
||
client=client,
|
||
_is_async=_is_async,
|
||
)
|
||
)
|
||
if azure_client is None:
|
||
raise ValueError(
|
||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||
)
|
||
|
||
if _is_async is True:
|
||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||
raise ValueError(
|
||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||
)
|
||
return self.aretrieve_batch( # type: ignore
|
||
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
||
)
|
||
response = azure_client.batches.retrieve(**retrieve_batch_data)
|
||
return response
|
||
|
||
def cancel_batch(
|
||
self,
|
||
_is_async: bool,
|
||
cancel_batch_data: CancelBatchRequest,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
timeout: Union[float, httpx.Timeout],
|
||
max_retries: Optional[int],
|
||
organization: Optional[str],
|
||
client: Optional[AzureOpenAI] = None,
|
||
):
|
||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||
self.get_azure_openai_client(
|
||
api_key=api_key,
|
||
api_base=api_base,
|
||
timeout=timeout,
|
||
max_retries=max_retries,
|
||
client=client,
|
||
_is_async=_is_async,
|
||
)
|
||
)
|
||
if azure_client is None:
|
||
raise ValueError(
|
||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||
)
|
||
response = azure_client.batches.cancel(**cancel_batch_data)
|
||
return response
|
||
|
||
async def alist_batches(
|
||
self,
|
||
client: AsyncAzureOpenAI,
|
||
after: Optional[str] = None,
|
||
limit: Optional[int] = None,
|
||
):
|
||
response = await client.batches.list(after=after, limit=limit) # type: ignore
|
||
return response
|
||
|
||
def list_batches(
|
||
self,
|
||
_is_async: bool,
|
||
api_key: Optional[str],
|
||
api_base: Optional[str],
|
||
api_version: Optional[str],
|
||
timeout: Union[float, httpx.Timeout],
|
||
max_retries: Optional[int],
|
||
after: Optional[str] = None,
|
||
limit: Optional[int] = None,
|
||
client: Optional[AzureOpenAI] = None,
|
||
):
|
||
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
||
self.get_azure_openai_client(
|
||
api_key=api_key,
|
||
api_base=api_base,
|
||
timeout=timeout,
|
||
max_retries=max_retries,
|
||
api_version=api_version,
|
||
client=client,
|
||
_is_async=_is_async,
|
||
)
|
||
)
|
||
if azure_client is None:
|
||
raise ValueError(
|
||
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
||
)
|
||
|
||
if _is_async is True:
|
||
if not isinstance(azure_client, AsyncAzureOpenAI):
|
||
raise ValueError(
|
||
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
||
)
|
||
return self.alist_batches( # type: ignore
|
||
client=azure_client, after=after, limit=limit
|
||
)
|
||
response = azure_client.batches.list(after=after, limit=limit) # type: ignore
|
||
return response
|