litellm/litellm/llms/watsonx/chat/handler.py
Krish Dholakia 5c55270740
LiteLLM Minor Fixes & Improvements (11/04/2024) (#6572)
* feat: initial commit for watsonx chat endpoint support

Closes https://github.com/BerriAI/litellm/issues/6562

* feat(watsonx/chat/handler.py): support tool calling for watsonx

Closes https://github.com/BerriAI/litellm/issues/6562

* fix(streaming_utils.py): return empty chunk instead of failing if streaming value is invalid dict

ensures streaming works for ibm watsonx

* fix(openai_like/chat/handler.py): ensure asynchttphandler is passed correctly for openai like calls

* fix: ensure exception mapping works well for watsonx calls

* fix(openai_like/chat/handler.py): handle async streaming correctly

* feat(main.py): Make it clear when a user is passing an invalid message

add validation for user content message

 Closes https://github.com/BerriAI/litellm/issues/6565

* fix: cleanup

* fix(utils.py): loosen validation check, to just make sure content types are valid

make litellm robust to future content updates

* fix: fix linting erro

* fix: fix linting errors

* fix(utils.py): make validation check more flexible

* test: handle langfuse list index out of range error

* Litellm dev 11 02 2024 (#6561)

* fix(dual_cache.py): update in-memory check for redis batch get cache

Fixes latency delay for async_batch_redis_cache

* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set

* feat(user_api_key_auth.py): add parent otel component for auth

allows us to isolate how much latency is added by auth checks

* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)

reduces latency by 200ms

* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)

Reduces latency by 400-800ms

* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls

reduces latency by 50-100ms

* fix: fix linting error

* fix(_service_logger.py): fix import

* fix(user_api_key_auth.py): fix service logging

* fix(dual_cache.py): don't pass 'self'

* fix: fix python3.8 error

* fix: fix init]

* bump: version 1.51.4 → 1.51.5

* build(deps): bump cookie and express in /docs/my-website (#6566)

Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.

Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)

Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)

---
updated-dependencies:
- dependency-name: cookie
  dependency-type: indirect
- dependency-name: express
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* docs(virtual_keys.md): update Dockerfile reference (#6554)

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* (proxy fix) - call connect on prisma client when running setup (#6534)

* critical fix - call connect on prisma client when running setup

* fix test_proxy_server_prisma_setup

* fix test_proxy_server_prisma_setup

* Add 3.5 haiku (#6588)

* feat: add claude-3-5-haiku-20241022 entries

* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models

* add missing entries, remove vision

* remove image token costs

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* build: fix map

* build: fix map

* build: fix json for model map

* Litellm dev 11 02 2024 (#6561)

* fix(dual_cache.py): update in-memory check for redis batch get cache

Fixes latency delay for async_batch_redis_cache

* fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set

* feat(user_api_key_auth.py): add parent otel component for auth

allows us to isolate how much latency is added by auth checks

* perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task)

reduces latency by 200ms

* feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter)

Reduces latency by 400-800ms

* fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls

reduces latency by 50-100ms

* fix: fix linting error

* fix(_service_logger.py): fix import

* fix(user_api_key_auth.py): fix service logging

* fix(dual_cache.py): don't pass 'self'

* fix: fix python3.8 error

* fix: fix init]

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* fix ImageObject conversion (#6584)

* (fix) litellm.text_completion raises a non-blocking error on simple usage (#6546)

* unit test test_huggingface_text_completion_logprobs

* fix return TextCompletionHandler convert_chat_to_text_completion

* fix hf rest api

* fix test_huggingface_text_completion_logprobs

* fix linting errors

* fix importLiteLLMResponseObjectHandler

* fix test for LiteLLMResponseObjectHandler

* fix test text completion

* fix allow using 15 seconds for premium license check

* testing fix bedrock deprecated cohere.command-text-v14

* (feat) add `Predicted Outputs` for OpenAI  (#6594)

* bump openai to openai==1.54.0

* add 'prediction' param

* testing fix bedrock deprecated cohere.command-text-v14

* test test_openai_prediction_param.py

* test_openai_prediction_param_with_caching

* doc Predicted Outputs

* doc Predicted Output

* (fix) Vertex Improve Performance when using `image_url`  (#6593)

* fix transformation vertex

* test test_process_gemini_image

* test_image_completion_request

* testing fix - bedrock has deprecated cohere.command-text-v14

* fix vertex pdf

* bump: version 1.51.5 → 1.52.0

* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check (#6577)

* fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check

* fix(lowest_tpm_rpm_v2.py): return headers in correct format

* test: update test

* build(deps): bump cookie and express in /docs/my-website (#6566)

Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together.

Updates `cookie` from 0.6.0 to 0.7.1
- [Release notes](https://github.com/jshttp/cookie/releases)
- [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1)

Updates `express` from 4.20.0 to 4.21.1
- [Release notes](https://github.com/expressjs/express/releases)
- [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md)
- [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1)

---
updated-dependencies:
- dependency-name: cookie
  dependency-type: indirect
- dependency-name: express
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>

* docs(virtual_keys.md): update Dockerfile reference (#6554)

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>

* (proxy fix) - call connect on prisma client when running setup (#6534)

* critical fix - call connect on prisma client when running setup

* fix test_proxy_server_prisma_setup

* fix test_proxy_server_prisma_setup

* Add 3.5 haiku (#6588)

* feat: add claude-3-5-haiku-20241022 entries

* feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models

* add missing entries, remove vision

* remove image token costs

* Litellm perf improvements 3 (#6573)

* perf: move writing key to cache, to background task

* perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils

adds 200ms on calls with pgdb connected

* fix(litellm_pre_call_utils.py'): rename call_type to actual call used

* perf(proxy_server.py): remove db logic from _get_config_from_file

was causing db calls to occur on every llm request, if team_id was set on key

* fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db

reduces latency/call by ~100ms

* fix(proxy_server.py): minor fix on existing_settings not incl alerting

* fix(exception_mapping_utils.py): map databricks exception string

* fix(auth_checks.py): fix auth check logic

* test: correctly mark flaky test

* fix(utils.py): handle auth token error for tokenizers.from_pretrained

* build: fix map

* build: fix map

* build: fix json for model map

* test: remove eol model

* fix(proxy_server.py): fix db config loading logic

* fix(proxy_server.py): fix order of config / db updates, to ensure fields not overwritten

* test: skip test if required env var is missing

* test: fix test

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>

* test: mark flaky test

* test: handle anthropic api instability

* test: update test

* test: bump num retries on langfuse tests - their api is quite bad

---------

Signed-off-by: dependabot[bot] <support@github.com>
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
2024-11-06 17:53:46 +05:30

123 lines
4.3 KiB
Python

from typing import Callable, Optional, Union
import httpx
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.types.llms.watsonx import WatsonXAIEndpoint, WatsonXAPIParams
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
from ...openai_like.chat.handler import OpenAILikeChatHandler
from ..common_utils import WatsonXAIError, _get_api_params
class WatsonXChatHandler(OpenAILikeChatHandler):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def _prepare_url(
self, model: str, api_params: WatsonXAPIParams, stream: Optional[bool]
) -> str:
if model.startswith("deployment/"):
if api_params.get("space_id") is None:
raise WatsonXAIError(
status_code=401,
url=api_params["url"],
message="Error: space_id is required for models called using the 'deployment/' endpoint. Pass in the space_id as a parameter or set it in the WX_SPACE_ID environment variable.",
)
deployment_id = "/".join(model.split("/")[1:])
endpoint = (
WatsonXAIEndpoint.DEPLOYMENT_CHAT_STREAM.value
if stream is True
else WatsonXAIEndpoint.DEPLOYMENT_CHAT.value
)
endpoint = endpoint.format(deployment_id=deployment_id)
else:
endpoint = (
WatsonXAIEndpoint.CHAT_STREAM.value
if stream is True
else WatsonXAIEndpoint.CHAT.value
)
base_url = httpx.URL(api_params["url"])
base_url = base_url.join(endpoint)
full_url = str(
base_url.copy_add_param(key="version", value=api_params["api_version"])
)
return full_url
def _prepare_payload(
self, model: str, api_params: WatsonXAPIParams, stream: Optional[bool]
) -> dict:
payload: dict = {}
if model.startswith("deployment/"):
return payload
payload["model_id"] = model
payload["project_id"] = api_params["project_id"]
return payload
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_llm_provider: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key: Optional[str],
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers: Optional[dict] = None,
timeout: Optional[Union[float, httpx.Timeout]] = None,
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
custom_endpoint: Optional[bool] = None,
streaming_decoder: Optional[
CustomStreamingDecoder
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
):
api_params = _get_api_params(optional_params, print_verbose=print_verbose)
if headers is None:
headers = {}
headers.update(
{
"Authorization": f"Bearer {api_params['token']}",
"Content-Type": "application/json",
"Accept": "application/json",
}
)
stream: Optional[bool] = optional_params.get("stream", False)
## get api url and payload
api_base = self._prepare_url(model=model, api_params=api_params, stream=stream)
watsonx_auth_payload = self._prepare_payload(
model=model, api_params=api_params, stream=stream
)
optional_params.update(watsonx_auth_payload)
return super().completion(
model=model,
messages=messages,
api_base=api_base,
custom_llm_provider=custom_llm_provider,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
acompletion=acompletion,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
timeout=timeout,
client=client,
custom_endpoint=True,
streaming_decoder=streaming_decoder,
)