litellm/tests/llm_translation/test_openai_o1.py
Ishaan Jaff 7f4dfe434a
[Fix] o1-mini causes pydantic warnings on reasoning_tokens (#5754)
* add requester_metadata in standard logging payload

* log requester_metadata in metadata

* use StandardLoggingPayload for logging

* docs StandardLoggingPayload

* fix import

* include standard logging object in failure

* add test for requester metadata

* handle completion_tokens_details

* add test for completion_tokens_details
2024-09-17 20:23:14 -07:00

122 lines
3.3 KiB
Python

import json
import os
import sys
from datetime import datetime
from unittest.mock import AsyncMock
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import httpx
import pytest
from respx import MockRouter
import litellm
from litellm import Choices, Message, ModelResponse
@pytest.mark.asyncio
@pytest.mark.respx
async def test_o1_handle_system_role(respx_mock: MockRouter):
"""
Tests that:
- max_tokens is translated to 'max_completion_tokens'
- role 'system' is translated to 'user'
"""
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model="o1-preview",
)
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model="o1-preview",
max_tokens=10,
messages=[{"role": "system", "content": "Hello!"}],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"model": "o1-preview",
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
@pytest.mark.asyncio
@pytest.mark.respx
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
async def test_o1_max_completion_tokens(respx_mock: MockRouter, model: str):
"""
Tests that:
- max_completion_tokens is passed directly to OpenAI chat completion models
"""
litellm.set_verbose = True
mock_response = ModelResponse(
id="cmpl-mock",
choices=[Choices(message=Message(content="Mocked response", role="assistant"))],
created=int(datetime.now().timestamp()),
model=model,
)
mock_request = respx_mock.post("https://api.openai.com/v1/chat/completions").mock(
return_value=httpx.Response(200, json=mock_response.dict())
)
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
)
assert mock_request.called
request_body = json.loads(mock_request.calls[0].request.content)
print("request_body: ", request_body)
assert request_body == {
"model": model,
"max_completion_tokens": 10,
"messages": [{"role": "user", "content": "Hello!"}],
}
print(f"response: {response}")
assert isinstance(response, ModelResponse)
def test_litellm_responses():
"""
ensures that type of completion_tokens_details is correctly handled / returned
"""
from litellm import ModelResponse
from litellm.types.utils import CompletionTokensDetails
response = ModelResponse(
usage={
"completion_tokens": 436,
"prompt_tokens": 14,
"total_tokens": 450,
"completion_tokens_details": {"reasoning_tokens": 0},
}
)
print("response: ", response)
assert isinstance(response.usage.completion_tokens_details, CompletionTokensDetails)