forked from phoenix/litellm-mirror
* feat(litellm_pre_call_utils.py): support forwarding request headers to backend llm api * fix(litellm_pre_call_utils.py): handle custom litellm key header * test(router_code_coverage.py): check if all router functions are dire… (#6186) * test(router_code_coverage.py): check if all router functions are directly tested prevent regressions * docs(configs.md): document all environment variables (#6185) * docs: make it easier to find anthropic/openai prompt caching doc * aded codecov yml (#6207) * fix codecov.yaml * run ci/cd again * (refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered * (feat) prometheus have well defined latency buckets (#6211) * fix prometheus have well defined latency buckets * use a well define latency bucket * use types file for prometheus logging * add test for LATENCY_BUCKETS * fix prom testing * fix config.yml * (refactor caching) use LLMCachingHandler for caching streaming responses (#6210) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * refactor async set stream cache * fix linting * bump (#6187) * update code cov yaml * fix config.yml * add caching component to code cov * fix config.yml ci/cd * add coverage for proxy auth * (refactor caching) use common `_retrieve_from_cache` helper (#6212) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * refactor async set stream cache * fix linting * refactor - use _retrieve_from_cache * refactor use _convert_cached_result_to_model_response * fix linting errors * bump: version 1.49.2 → 1.49.3 * fix code cov components * test(test_router_helpers.py): add router component unit tests * test: add additional router tests * test: add more router testing * test: add more router testing + more mock functions * ci(router_code_coverage.py): fix check --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> * bump: version 1.49.3 → 1.49.4 * (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220) * (refactor) use _assemble_complete_response_from_streaming_chunks * add unit test for test_assemble_complete_response_from_streaming_chunks_1 * fix assemble complete_streaming_response * config add logging_testing * add logging_coverage in codecov * test test_assemble_complete_response_from_streaming_chunks_3 * add unit tests for _assemble_complete_response_from_streaming_chunks * fix remove unused / junk function * add test for streaming_chunks when error assembling * (refactor) OTEL - use safe_set_attribute for setting attributes (#6226) * otel - use safe_set_attribute for setting attributes * fix OTEL only use safe_set_attribute * (fix) prompt caching cost calculation OpenAI, Azure OpenAI (#6231) * fix prompt caching cost calculation * fix testing for prompt cache cost calc * fix(allowed_model_region): allow us as allowed region (#6234) * test(router_code_coverage.py): check if all router functions are dire… (#6186) * test(router_code_coverage.py): check if all router functions are directly tested prevent regressions * docs(configs.md): document all environment variables (#6185) * docs: make it easier to find anthropic/openai prompt caching doc * aded codecov yml (#6207) * fix codecov.yaml * run ci/cd again * (refactor) caching use LLMCachingHandler for async_get_cache and set_cache (#6208) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * fix test_embedding_caching_azure_individual_items_reordered * (feat) prometheus have well defined latency buckets (#6211) * fix prometheus have well defined latency buckets * use a well define latency bucket * use types file for prometheus logging * add test for LATENCY_BUCKETS * fix prom testing * fix config.yml * (refactor caching) use LLMCachingHandler for caching streaming responses (#6210) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * refactor async set stream cache * fix linting * bump (#6187) * update code cov yaml * fix config.yml * add caching component to code cov * fix config.yml ci/cd * add coverage for proxy auth * (refactor caching) use common `_retrieve_from_cache` helper (#6212) * use folder for caching * fix importing caching * fix clickhouse pyright * fix linting * fix correctly pass kwargs and args * fix test case for embedding * fix linting * fix embedding caching logic * fix refactor handle utils.py * refactor async set stream cache * fix linting * refactor - use _retrieve_from_cache * refactor use _convert_cached_result_to_model_response * fix linting errors * bump: version 1.49.2 → 1.49.3 * fix code cov components * test(test_router_helpers.py): add router component unit tests * test: add additional router tests * test: add more router testing * test: add more router testing + more mock functions * ci(router_code_coverage.py): fix check --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> * bump: version 1.49.3 → 1.49.4 * (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220) * (refactor) use _assemble_complete_response_from_streaming_chunks * add unit test for test_assemble_complete_response_from_streaming_chunks_1 * fix assemble complete_streaming_response * config add logging_testing * add logging_coverage in codecov * test test_assemble_complete_response_from_streaming_chunks_3 * add unit tests for _assemble_complete_response_from_streaming_chunks * fix remove unused / junk function * add test for streaming_chunks when error assembling * (refactor) OTEL - use safe_set_attribute for setting attributes (#6226) * otel - use safe_set_attribute for setting attributes * fix OTEL only use safe_set_attribute * fix(allowed_model_region): allow us as allowed region --------- Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> * fix(litellm_pre_call_utils.py): support 'us' region routing + fix header forwarding to filter on `x-` headers * docs(customer_routing.md): fix region-based routing example * feat(azure.py): handle empty arguments function call - azure Closes https://github.com/BerriAI/litellm/issues/6241 * feat(guardrails_ai.py): support guardrails ai integration Adds support for on-prem guardrails via guardrails ai * fix(proxy/utils.py): prevent sql injection attack Fixes https://huntr.com/bounties/a4f6d357-5b44-4e00-9cac-f1cc351211d2 * fix: fix linting errors * fix(litellm_pre_call_utils.py): don't log litellm api key in proxy server request headers * fix(litellm_pre_call_utils.py): don't forward stainless headers * docs(guardrails_ai.md): add guardrails ai quick start to docs * test: handle flaky test --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: yujonglee <yujonglee.dev@gmail.com> Co-authored-by: Marcus Elwin <marcus@elwin.com>
459 lines
17 KiB
Python
459 lines
17 KiB
Python
#### What this tests ####
|
|
# This tests if prompts are being correctly formatted
|
|
import os
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
sys.path.insert(0, os.path.abspath("../.."))
|
|
|
|
from typing import Union
|
|
|
|
# from litellm.llms.prompt_templates.factory import prompt_factory
|
|
import litellm
|
|
from litellm import completion
|
|
from litellm.llms.prompt_templates.factory import (
|
|
_bedrock_tools_pt,
|
|
anthropic_messages_pt,
|
|
anthropic_pt,
|
|
claude_2_1_pt,
|
|
convert_to_anthropic_image_obj,
|
|
convert_url_to_base64,
|
|
llama_2_chat_pt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.vertex_ai_non_gemini import (
|
|
_gemini_convert_messages_with_history,
|
|
)
|
|
|
|
|
|
def test_llama_3_prompt():
|
|
messages = [
|
|
{"role": "system", "content": "You are a good bot"},
|
|
{"role": "user", "content": "Hey, how's it going?"},
|
|
]
|
|
received_prompt = prompt_factory(
|
|
model="meta-llama/Meta-Llama-3-8B-Instruct", messages=messages
|
|
)
|
|
print(f"received_prompt: {received_prompt}")
|
|
|
|
expected_prompt = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a good bot<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHey, how's it going?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""
|
|
assert received_prompt == expected_prompt
|
|
|
|
|
|
def test_codellama_prompt_format():
|
|
messages = [
|
|
{"role": "system", "content": "You are a good bot"},
|
|
{"role": "user", "content": "Hey, how's it going?"},
|
|
]
|
|
expected_prompt = "<s>[INST] <<SYS>>\nYou are a good bot\n<</SYS>>\n [/INST]\n[INST] Hey, how's it going? [/INST]\n"
|
|
assert llama_2_chat_pt(messages) == expected_prompt
|
|
|
|
|
|
def test_claude_2_1_pt_formatting():
|
|
# Test case: User only, should add Assistant
|
|
messages = [{"role": "user", "content": "Hello"}]
|
|
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
|
|
assert claude_2_1_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, User, and Assistant "pre-fill" sequence,
|
|
# Should return pre-fill
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
|
|
{"role": "assistant", "content": "{"},
|
|
]
|
|
expected_prompt = 'You are a helpful assistant.\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
|
|
assert claude_2_1_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, Assistant sequence, should insert blank Human message
|
|
# before Assistant pre-fill
|
|
messages = [
|
|
{"role": "system", "content": "You are a storyteller."},
|
|
{"role": "assistant", "content": "Once upon a time, there "},
|
|
]
|
|
expected_prompt = (
|
|
"You are a storyteller.\n\nHuman: \n\nAssistant: Once upon a time, there "
|
|
)
|
|
assert claude_2_1_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, User sequence
|
|
messages = [
|
|
{"role": "system", "content": "System reboot"},
|
|
{"role": "user", "content": "Is everything okay?"},
|
|
]
|
|
expected_prompt = "System reboot\n\nHuman: Is everything okay?\n\nAssistant: "
|
|
assert claude_2_1_pt(messages) == expected_prompt
|
|
|
|
|
|
def test_anthropic_pt_formatting():
|
|
# Test case: User only, should add Assistant
|
|
messages = [{"role": "user", "content": "Hello"}]
|
|
expected_prompt = "\n\nHuman: Hello\n\nAssistant: "
|
|
assert anthropic_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, User, and Assistant "pre-fill" sequence,
|
|
# Should return pre-fill
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": 'Please return "Hello World" as a JSON object.'},
|
|
{"role": "assistant", "content": "{"},
|
|
]
|
|
expected_prompt = '\n\nHuman: <admin>You are a helpful assistant.</admin>\n\nHuman: Please return "Hello World" as a JSON object.\n\nAssistant: {'
|
|
assert anthropic_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, Assistant sequence, should NOT insert blank Human message
|
|
# before Assistant pre-fill, because "System" messages are Human
|
|
# messages wrapped with <admin></admin>
|
|
messages = [
|
|
{"role": "system", "content": "You are a storyteller."},
|
|
{"role": "assistant", "content": "Once upon a time, there "},
|
|
]
|
|
expected_prompt = "\n\nHuman: <admin>You are a storyteller.</admin>\n\nAssistant: Once upon a time, there "
|
|
assert anthropic_pt(messages) == expected_prompt
|
|
|
|
# Test case: System, User sequence
|
|
messages = [
|
|
{"role": "system", "content": "System reboot"},
|
|
{"role": "user", "content": "Is everything okay?"},
|
|
]
|
|
expected_prompt = "\n\nHuman: <admin>System reboot</admin>\n\nHuman: Is everything okay?\n\nAssistant: "
|
|
assert anthropic_pt(messages) == expected_prompt
|
|
|
|
|
|
def test_anthropic_messages_pt():
|
|
# Test case: No messages (filtered system messages only)
|
|
litellm.modify_params = True
|
|
messages = []
|
|
expected_messages = [{"role": "user", "content": [{"type": "text", "text": "."}]}]
|
|
assert (
|
|
anthropic_messages_pt(
|
|
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
|
|
)
|
|
== expected_messages
|
|
)
|
|
|
|
# Test case: No messages (filtered system messages only) when modify_params is False should raise error
|
|
litellm.modify_params = False
|
|
messages = []
|
|
with pytest.raises(Exception) as err:
|
|
anthropic_messages_pt(
|
|
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
|
|
)
|
|
assert "Invalid first message" in str(err.value)
|
|
|
|
|
|
def test_anthropic_messages_nested_pt():
|
|
from litellm.types.llms.anthropic import (
|
|
AnthopicMessagesAssistantMessageParam,
|
|
AnthropicMessagesUserMessageParam,
|
|
)
|
|
|
|
messages = [
|
|
{"content": [{"text": "here is a task", "type": "text"}], "role": "user"},
|
|
{
|
|
"content": [{"text": "sure happy to help", "type": "text"}],
|
|
"role": "assistant",
|
|
},
|
|
{
|
|
"content": [
|
|
{
|
|
"text": "Here is a screenshot of the current desktop with the "
|
|
"mouse coordinates (500, 350). Please select an action "
|
|
"from the provided schema.",
|
|
"type": "text",
|
|
}
|
|
],
|
|
"role": "user",
|
|
},
|
|
]
|
|
|
|
new_messages = anthropic_messages_pt(
|
|
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
|
|
)
|
|
|
|
assert isinstance(new_messages[1]["content"][0]["text"], str)
|
|
|
|
|
|
# codellama_prompt_format()
|
|
def test_bedrock_tool_calling_pt():
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
converted_tools = _bedrock_tools_pt(tools=tools)
|
|
|
|
print(converted_tools)
|
|
|
|
|
|
def test_convert_url_to_img():
|
|
response_url = convert_url_to_base64(
|
|
url="https://images.pexels.com/photos/1319515/pexels-photo-1319515.jpeg?auto=compress&cs=tinysrgb&w=1260&h=750&dpr=1"
|
|
)
|
|
|
|
assert "image/jpeg" in response_url
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"url, expected_media_type",
|
|
[
|
|
("", "image/jpeg"),
|
|
("data:application/pdf;base64,1234", "application/pdf"),
|
|
(r"data:image\/jpeg;base64,1234", "image/jpeg"),
|
|
],
|
|
)
|
|
def test_base64_image_input(url, expected_media_type):
|
|
response = convert_to_anthropic_image_obj(openai_image_url=url)
|
|
|
|
assert response["media_type"] == expected_media_type
|
|
|
|
|
|
def test_anthropic_messages_tool_call():
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "Would development of a software platform be under ASC 350-40 or ASC 985?",
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "",
|
|
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
|
|
"tool_calls": [
|
|
{
|
|
"id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
|
|
"function": {
|
|
"arguments": '{"completed_steps": [], "next_steps": [{"tool_name": "AccountingResearchTool", "description": "Research ASC 350-40 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Research ASC 985 to understand its scope and applicability to software development."}, {"tool_name": "AccountingResearchTool", "description": "Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}], "learnings": [], "potential_issues": ["The distinction between the two standards might not be clear-cut for all types of software development.", "There might be specific circumstances or details about the software platform that could affect which standard applies."], "missing_info": ["Specific details about the type of software platform being developed (e.g., for internal use or for sale).", "Whether the entity developing the software is also the end-user or if it\'s being developed for external customers."], "done": false, "required_formatting": null}',
|
|
"name": "TaskPlanningTool",
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"role": "function",
|
|
"content": '{"completed_steps":[],"next_steps":[{"tool_name":"AccountingResearchTool","description":"Research ASC 350-40 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Research ASC 985 to understand its scope and applicability to software development."},{"tool_name":"AccountingResearchTool","description":"Compare the scopes of ASC 350-40 and ASC 985 to determine which is more applicable to software platform development."}],"formatting_step":null}',
|
|
"name": "TaskPlanningTool",
|
|
"tool_call_id": "bc8cb4b6-88c4-4138-8993-3a9d9cd51656",
|
|
},
|
|
]
|
|
|
|
translated_messages = anthropic_messages_pt(
|
|
messages, model="claude-3-sonnet-20240229", llm_provider="anthropic"
|
|
)
|
|
|
|
print(translated_messages)
|
|
|
|
assert (
|
|
translated_messages[-1]["content"][0]["tool_use_id"]
|
|
== "bc8cb4b6-88c4-4138-8993-3a9d9cd51656"
|
|
)
|
|
|
|
|
|
def test_anthropic_cache_controls_pt():
|
|
"see anthropic docs for this: https://docs.anthropic.com/en/docs/build-with-claude/prompt-caching#continuing-a-multi-turn-conversation"
|
|
messages = [
|
|
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What are the key terms and conditions in this agreement?",
|
|
"cache_control": {"type": "ephemeral"},
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
|
|
},
|
|
# The final turn is marked with cache-control, for continuing in followups.
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "What are the key terms and conditions in this agreement?",
|
|
"cache_control": {"type": "ephemeral"},
|
|
}
|
|
],
|
|
},
|
|
{
|
|
"role": "assistant",
|
|
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
|
|
"cache_control": {"type": "ephemeral"},
|
|
},
|
|
]
|
|
|
|
translated_messages = anthropic_messages_pt(
|
|
messages, model="claude-3-5-sonnet-20240620", llm_provider="anthropic"
|
|
)
|
|
|
|
for i, msg in enumerate(translated_messages):
|
|
if i == 0:
|
|
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
|
|
elif i == 1:
|
|
assert "cache_controls" not in msg["content"][0]
|
|
elif i == 2:
|
|
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
|
|
elif i == 3:
|
|
assert msg["content"][0]["cache_control"] == {"type": "ephemeral"}
|
|
|
|
print("translated_messages: ", translated_messages)
|
|
|
|
|
|
@pytest.mark.parametrize("provider", ["bedrock", "anthropic"])
|
|
def test_bedrock_parallel_tool_calling_pt(provider):
|
|
"""
|
|
Make sure parallel tool call blocks are merged correctly - https://github.com/BerriAI/litellm/issues/5277
|
|
"""
|
|
from litellm.llms.prompt_templates.factory import _bedrock_converse_messages_pt
|
|
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
|
},
|
|
Message(
|
|
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
|
|
role="assistant",
|
|
tool_calls=[
|
|
ChatCompletionMessageToolCall(
|
|
index=1,
|
|
function=Function(
|
|
arguments='{"city": "New York"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
|
|
type="function",
|
|
),
|
|
ChatCompletionMessageToolCall(
|
|
index=2,
|
|
function=Function(
|
|
arguments='{"city": "London"}',
|
|
name="get_current_weather",
|
|
),
|
|
id="tooluse_VB9nk7UGRniVzGcaj6xrAQ",
|
|
type="function",
|
|
),
|
|
],
|
|
function_call=None,
|
|
),
|
|
{
|
|
"tool_call_id": "tooluse_XcqEBfm8R-2YVaPhDUHsPQ",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": "25 degrees celsius.",
|
|
},
|
|
{
|
|
"tool_call_id": "tooluse_VB9nk7UGRniVzGcaj6xrAQ",
|
|
"role": "tool",
|
|
"name": "get_current_weather",
|
|
"content": "28 degrees celsius.",
|
|
},
|
|
]
|
|
|
|
if provider == "bedrock":
|
|
translated_messages = _bedrock_converse_messages_pt(
|
|
messages=messages,
|
|
model="anthropic.claude-3-sonnet-20240229-v1:0",
|
|
llm_provider="bedrock",
|
|
)
|
|
else:
|
|
translated_messages = anthropic_messages_pt(
|
|
messages=messages,
|
|
model="claude-3-sonnet-20240229-v1:0",
|
|
llm_provider=provider,
|
|
)
|
|
print(translated_messages)
|
|
|
|
number_of_messages = len(translated_messages)
|
|
|
|
# assert last 2 messages are not the same role
|
|
assert (
|
|
translated_messages[number_of_messages - 1]["role"]
|
|
!= translated_messages[number_of_messages - 2]["role"]
|
|
)
|
|
|
|
|
|
def test_vertex_only_image_user_message():
|
|
base64_image = "/9j/2wCEAAgGBgcGBQ"
|
|
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": [
|
|
{
|
|
"type": "image_url",
|
|
"image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
|
|
},
|
|
],
|
|
},
|
|
]
|
|
|
|
response = _gemini_convert_messages_with_history(messages=messages)
|
|
|
|
expected_response = [
|
|
{
|
|
"role": "user",
|
|
"parts": [
|
|
{
|
|
"inline_data": {
|
|
"data": "/9j/2wCEAAgGBgcGBQ",
|
|
"mime_type": "image/jpeg",
|
|
}
|
|
},
|
|
{"text": " "},
|
|
],
|
|
}
|
|
]
|
|
|
|
assert len(response) == len(expected_response)
|
|
for idx, content in enumerate(response):
|
|
assert (
|
|
content == expected_response[idx]
|
|
), "Invalid gemini input. Got={}, Expected={}".format(
|
|
content, expected_response[idx]
|
|
)
|
|
|
|
|
|
def test_convert_url():
|
|
convert_url_to_base64("https://picsum.photos/id/237/200/300")
|
|
|
|
|
|
def test_azure_tool_call_invoke_helper():
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "What is the weather in Copenhagen?"},
|
|
{"role": "assistant", "function_call": {"name": "get_weather"}},
|
|
]
|
|
|
|
transformed_messages = litellm.AzureOpenAIConfig.transform_request(
|
|
model="gpt-4o", messages=messages, optional_params={}
|
|
)
|
|
|
|
assert transformed_messages["messages"] == [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "What is the weather in Copenhagen?"},
|
|
{
|
|
"role": "assistant",
|
|
"function_call": {"name": "get_weather", "arguments": ""},
|
|
},
|
|
]
|