forked from phoenix/litellm-mirror
* feat: initial commit for watsonx chat endpoint support Closes https://github.com/BerriAI/litellm/issues/6562 * feat(watsonx/chat/handler.py): support tool calling for watsonx Closes https://github.com/BerriAI/litellm/issues/6562 * fix(streaming_utils.py): return empty chunk instead of failing if streaming value is invalid dict ensures streaming works for ibm watsonx * fix(openai_like/chat/handler.py): ensure asynchttphandler is passed correctly for openai like calls * fix: ensure exception mapping works well for watsonx calls * fix(openai_like/chat/handler.py): handle async streaming correctly * feat(main.py): Make it clear when a user is passing an invalid message add validation for user content message Closes https://github.com/BerriAI/litellm/issues/6565 * fix: cleanup * fix(utils.py): loosen validation check, to just make sure content types are valid make litellm robust to future content updates * fix: fix linting erro * fix: fix linting errors * fix(utils.py): make validation check more flexible * test: handle langfuse list index out of range error * Litellm dev 11 02 2024 (#6561) * fix(dual_cache.py): update in-memory check for redis batch get cache Fixes latency delay for async_batch_redis_cache * fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set * feat(user_api_key_auth.py): add parent otel component for auth allows us to isolate how much latency is added by auth checks * perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task) reduces latency by 200ms * feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter) Reduces latency by 400-800ms * fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls reduces latency by 50-100ms * fix: fix linting error * fix(_service_logger.py): fix import * fix(user_api_key_auth.py): fix service logging * fix(dual_cache.py): don't pass 'self' * fix: fix python3.8 error * fix: fix init] * bump: version 1.51.4 → 1.51.5 * build(deps): bump cookie and express in /docs/my-website (#6566) Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together. Updates `cookie` from 0.6.0 to 0.7.1 - [Release notes](https://github.com/jshttp/cookie/releases) - [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1) Updates `express` from 4.20.0 to 4.21.1 - [Release notes](https://github.com/expressjs/express/releases) - [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md) - [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1) --- updated-dependencies: - dependency-name: cookie dependency-type: indirect - dependency-name: express dependency-type: indirect ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * docs(virtual_keys.md): update Dockerfile reference (#6554) Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> * (proxy fix) - call connect on prisma client when running setup (#6534) * critical fix - call connect on prisma client when running setup * fix test_proxy_server_prisma_setup * fix test_proxy_server_prisma_setup * Add 3.5 haiku (#6588) * feat: add claude-3-5-haiku-20241022 entries * feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models * add missing entries, remove vision * remove image token costs * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * build: fix map * build: fix map * build: fix json for model map * Litellm dev 11 02 2024 (#6561) * fix(dual_cache.py): update in-memory check for redis batch get cache Fixes latency delay for async_batch_redis_cache * fix(service_logger.py): fix race condition causing otel service logging to be overwritten if service_callbacks set * feat(user_api_key_auth.py): add parent otel component for auth allows us to isolate how much latency is added by auth checks * perf(parallel_request_limiter.py): move async_set_cache_pipeline (from max parallel request limiter) out of execution path (background task) reduces latency by 200ms * feat(user_api_key_auth.py): have user api key auth object return user tpm/rpm limits - reduces redis calls in downstream task (parallel_request_limiter) Reduces latency by 400-800ms * fix(parallel_request_limiter.py): use batch get cache to reduce user/key/team usage object calls reduces latency by 50-100ms * fix: fix linting error * fix(_service_logger.py): fix import * fix(user_api_key_auth.py): fix service logging * fix(dual_cache.py): don't pass 'self' * fix: fix python3.8 error * fix: fix init] * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * fix ImageObject conversion (#6584) * (fix) litellm.text_completion raises a non-blocking error on simple usage (#6546) * unit test test_huggingface_text_completion_logprobs * fix return TextCompletionHandler convert_chat_to_text_completion * fix hf rest api * fix test_huggingface_text_completion_logprobs * fix linting errors * fix importLiteLLMResponseObjectHandler * fix test for LiteLLMResponseObjectHandler * fix test text completion * fix allow using 15 seconds for premium license check * testing fix bedrock deprecated cohere.command-text-v14 * (feat) add `Predicted Outputs` for OpenAI (#6594) * bump openai to openai==1.54.0 * add 'prediction' param * testing fix bedrock deprecated cohere.command-text-v14 * test test_openai_prediction_param.py * test_openai_prediction_param_with_caching * doc Predicted Outputs * doc Predicted Output * (fix) Vertex Improve Performance when using `image_url` (#6593) * fix transformation vertex * test test_process_gemini_image * test_image_completion_request * testing fix - bedrock has deprecated cohere.command-text-v14 * fix vertex pdf * bump: version 1.51.5 → 1.52.0 * fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check (#6577) * fix(lowest_tpm_rpm_routing.py): fix parallel rate limit check * fix(lowest_tpm_rpm_v2.py): return headers in correct format * test: update test * build(deps): bump cookie and express in /docs/my-website (#6566) Bumps [cookie](https://github.com/jshttp/cookie) and [express](https://github.com/expressjs/express). These dependencies needed to be updated together. Updates `cookie` from 0.6.0 to 0.7.1 - [Release notes](https://github.com/jshttp/cookie/releases) - [Commits](https://github.com/jshttp/cookie/compare/v0.6.0...v0.7.1) Updates `express` from 4.20.0 to 4.21.1 - [Release notes](https://github.com/expressjs/express/releases) - [Changelog](https://github.com/expressjs/express/blob/4.21.1/History.md) - [Commits](https://github.com/expressjs/express/compare/4.20.0...4.21.1) --- updated-dependencies: - dependency-name: cookie dependency-type: indirect - dependency-name: express dependency-type: indirect ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * docs(virtual_keys.md): update Dockerfile reference (#6554) Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> * (proxy fix) - call connect on prisma client when running setup (#6534) * critical fix - call connect on prisma client when running setup * fix test_proxy_server_prisma_setup * fix test_proxy_server_prisma_setup * Add 3.5 haiku (#6588) * feat: add claude-3-5-haiku-20241022 entries * feat: add claude-3-5-haiku-20241022 and vertex_ai/claude-3-5-haiku@20241022 models * add missing entries, remove vision * remove image token costs * Litellm perf improvements 3 (#6573) * perf: move writing key to cache, to background task * perf(litellm_pre_call_utils.py): add otel tracing for pre-call utils adds 200ms on calls with pgdb connected * fix(litellm_pre_call_utils.py'): rename call_type to actual call used * perf(proxy_server.py): remove db logic from _get_config_from_file was causing db calls to occur on every llm request, if team_id was set on key * fix(auth_checks.py): add check for reducing db calls if user/team id does not exist in db reduces latency/call by ~100ms * fix(proxy_server.py): minor fix on existing_settings not incl alerting * fix(exception_mapping_utils.py): map databricks exception string * fix(auth_checks.py): fix auth check logic * test: correctly mark flaky test * fix(utils.py): handle auth token error for tokenizers.from_pretrained * build: fix map * build: fix map * build: fix json for model map * test: remove eol model * fix(proxy_server.py): fix db config loading logic * fix(proxy_server.py): fix order of config / db updates, to ensure fields not overwritten * test: skip test if required env var is missing * test: fix test --------- Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com> * test: mark flaky test * test: handle anthropic api instability * test: update test * test: bump num retries on langfuse tests - their api is quite bad --------- Signed-off-by: dependabot[bot] <support@github.com> Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by: Emmanuel Ferdman <emmanuelferdman@gmail.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: paul-gauthier <69695708+paul-gauthier@users.noreply.github.com>
372 lines
12 KiB
Python
372 lines
12 KiB
Python
"""
|
|
OpenAI-like chat completion handler
|
|
|
|
For handling OpenAI-like chat completions, like IBM WatsonX, etc.
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
import os
|
|
import time
|
|
import types
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
|
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.llms.databricks.streaming_utils import ModelResponseIterator
|
|
from litellm.types.utils import CustomStreamingDecoder, ModelResponse
|
|
from litellm.utils import CustomStreamWrapper, EmbeddingResponse
|
|
|
|
from ..common_utils import OpenAILikeBase, OpenAILikeError
|
|
|
|
|
|
async def make_call(
|
|
client: Optional[AsyncHTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
if client is None:
|
|
client = litellm.module_level_aclient
|
|
|
|
response = await client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream: Any = streaming_decoder.aiter_bytes(
|
|
response.aiter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.aiter_lines(), sync_stream=False
|
|
)
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
def make_sync_call(
|
|
client: Optional[HTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
):
|
|
if client is None:
|
|
client = litellm.module_level_client # Create a new client if none provided
|
|
|
|
response = client.post(api_base, headers=headers, data=data, stream=True)
|
|
|
|
if response.status_code != 200:
|
|
raise OpenAILikeError(status_code=response.status_code, message=response.read())
|
|
|
|
if streaming_decoder is not None:
|
|
completion_stream = streaming_decoder.iter_bytes(
|
|
response.iter_bytes(chunk_size=1024)
|
|
)
|
|
else:
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.iter_lines(), sync_stream=True
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream
|
|
|
|
|
|
class OpenAILikeChatHandler(OpenAILikeBase):
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
|
|
async def acompletion_stream_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
custom_llm_provider: str,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
streaming_decoder: Optional[CustomStreamingDecoder] = None,
|
|
) -> CustomStreamWrapper:
|
|
|
|
data["stream"] = True
|
|
completion_stream = await make_call(
|
|
client=client,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
return streamwrapper
|
|
|
|
async def acompletion_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
custom_llm_provider: str,
|
|
print_verbose: Callable,
|
|
client: Optional[AsyncHTTPHandler],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
data: dict,
|
|
base_model: Optional[str],
|
|
optional_params: dict,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
) -> ModelResponse:
|
|
if timeout is None:
|
|
timeout = httpx.Timeout(timeout=600.0, connect=5.0)
|
|
|
|
if client is None:
|
|
client = litellm.module_level_aclient
|
|
|
|
try:
|
|
response = await client.post(
|
|
api_base, headers=headers, data=json.dumps(data), timeout=timeout
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(status_code=408, message="Timeout error occurred.")
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=response_json,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
response = ModelResponse(**response_json)
|
|
|
|
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
return response
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_llm_provider: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key: Optional[str],
|
|
logging_obj,
|
|
optional_params: dict,
|
|
acompletion=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers: Optional[dict] = None,
|
|
timeout: Optional[Union[float, httpx.Timeout]] = None,
|
|
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
|
|
custom_endpoint: Optional[bool] = None,
|
|
streaming_decoder: Optional[
|
|
CustomStreamingDecoder
|
|
] = None, # if openai-compatible api needs custom stream decoder - e.g. sagemaker
|
|
):
|
|
custom_endpoint = custom_endpoint or optional_params.pop(
|
|
"custom_endpoint", None
|
|
)
|
|
base_model: Optional[str] = optional_params.pop("base_model", None)
|
|
api_base, headers = self._validate_environment(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
endpoint_type="chat_completions",
|
|
custom_endpoint=custom_endpoint,
|
|
headers=headers,
|
|
)
|
|
|
|
stream: bool = optional_params.get("stream", None) or False
|
|
optional_params["stream"] = stream
|
|
|
|
data = {
|
|
"model": model,
|
|
"messages": messages,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
if acompletion is True:
|
|
if client is None or not isinstance(client, AsyncHTTPHandler):
|
|
client = None
|
|
if (
|
|
stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
data["stream"] = stream
|
|
return self.acompletion_stream_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
client=client,
|
|
custom_llm_provider=custom_llm_provider,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
else:
|
|
return self.acompletion_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
custom_llm_provider=custom_llm_provider,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
base_model=base_model,
|
|
client=client,
|
|
)
|
|
else:
|
|
## COMPLETION CALL
|
|
if stream is True:
|
|
completion_stream = make_sync_call(
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, HTTPHandler)
|
|
else None
|
|
),
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
streaming_decoder=streaming_decoder,
|
|
)
|
|
# completion_stream.__iter__()
|
|
return CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider=custom_llm_provider,
|
|
logging_obj=logging_obj,
|
|
)
|
|
else:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout) # type: ignore
|
|
try:
|
|
response = client.post(
|
|
api_base, headers=headers, data=json.dumps(data)
|
|
)
|
|
response.raise_for_status()
|
|
|
|
response_json = response.json()
|
|
except httpx.HTTPStatusError as e:
|
|
raise OpenAILikeError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.text,
|
|
)
|
|
except httpx.TimeoutException:
|
|
raise OpenAILikeError(
|
|
status_code=408, message="Timeout error occurred."
|
|
)
|
|
except Exception as e:
|
|
raise OpenAILikeError(status_code=500, message=str(e))
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=response_json,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
response = ModelResponse(**response_json)
|
|
|
|
response.model = custom_llm_provider + "/" + (response.model or "")
|
|
|
|
if base_model is not None:
|
|
response._hidden_params["model"] = base_model
|
|
|
|
return response
|