forked from phoenix/litellm-mirror
* fix(ui_sso.py): fix faulty admin only check Fixes https://github.com/BerriAI/litellm/issues/6286 * refactor(sso_helper_utils.py): refactor /sso/callback to use helper utils, covered by unit testing Prevent future regressions * feat(prompt_factory): support 'ensure_alternating_roles' param Closes https://github.com/BerriAI/litellm/issues/6257 * fix(proxy/utils.py): add dailytagspend to expected views * feat(auth_utils.py): support setting regex for clientside auth credentials Fixes https://github.com/BerriAI/litellm/issues/6203 * build(cookbook): add tutorial for mlflow + langchain + litellm proxy tracing * feat(argilla.py): add argilla logging integration Closes https://github.com/BerriAI/litellm/issues/6201 * fix: fix linting errors * fix: fix ruff error * test: fix test * fix: update vertex ai assumption - parts not always guaranteed (#6296) * docs(configs.md): add argila env var to docs
312 lines
8.2 KiB
Text
Vendored
312 lines
8.2 KiB
Text
Vendored
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Databricks Notebook with MLFlow AutoLogging for LiteLLM Proxy calls\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "5e2812ed-8000-4793-b090-49a31464d810",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install -U -qqqq databricks-agents mlflow langchain==0.3.1 langchain-core==0.3.6 "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "52530b37-1860-4bba-a6c1-723de83bc58f",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"%pip install \"langchain-openai<=0.3.1\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "43c6f4b1-e2d5-431c-b1a2-b97df7707d59",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Before logging this chain using the driver notebook, you must comment out this line.\n",
|
|
"dbutils.library.restartPython() "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "88eb8dd7-16b1-480b-aa70-cd429ef87159",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import mlflow\n",
|
|
"from operator import itemgetter\n",
|
|
"from langchain_core.output_parsers import StrOutputParser\n",
|
|
"from langchain_core.prompts import PromptTemplate\n",
|
|
"from langchain_core.runnables import RunnableLambda\n",
|
|
"from langchain_databricks import ChatDatabricks\n",
|
|
"from langchain_openai import ChatOpenAI"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "f0fdca8f-6f6f-407c-ad4a-0d5a2778728e",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import mlflow\n",
|
|
"mlflow.langchain.autolog()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "2ef67315-e468-4d60-a318-98c2cac75bc4",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"# These helper functions parse the `messages` array.\n",
|
|
"\n",
|
|
"# Return the string contents of the most recent message from the user\n",
|
|
"def extract_user_query_string(chat_messages_array):\n",
|
|
" return chat_messages_array[-1][\"content\"]\n",
|
|
"\n",
|
|
"\n",
|
|
"# Return the chat history, which is is everything before the last question\n",
|
|
"def extract_chat_history(chat_messages_array):\n",
|
|
" return chat_messages_array[:-1]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "17708467-1976-48bd-94a0-8c7895cfae3b",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"model = ChatOpenAI(\n",
|
|
" openai_api_base=\"LITELLM_PROXY_BASE_URL\", # e.g.: http://0.0.0.0:4000\n",
|
|
" model = \"gpt-3.5-turbo\", # LITELLM 'model_name'\n",
|
|
" temperature=0.1, \n",
|
|
" api_key=\"LITELLM_PROXY_API_KEY\" # e.g.: \"sk-1234\"\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "a5f2c2af-82f7-470d-b559-47b67fb00cda",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"############\n",
|
|
"# Prompt Template for generation\n",
|
|
"############\n",
|
|
"prompt = PromptTemplate(\n",
|
|
" template=\"You are a hello world bot. Respond with a reply to the user's question that is fun and interesting to the user. User's question: {question}\",\n",
|
|
" input_variables=[\"question\"],\n",
|
|
")\n",
|
|
"\n",
|
|
"############\n",
|
|
"# FM for generation\n",
|
|
"# ChatDatabricks accepts any /llm/v1/chat model serving endpoint\n",
|
|
"############\n",
|
|
"model = ChatDatabricks(\n",
|
|
" endpoint=\"databricks-dbrx-instruct\",\n",
|
|
" extra_params={\"temperature\": 0.01, \"max_tokens\": 500},\n",
|
|
")\n",
|
|
"\n",
|
|
"\n",
|
|
"############\n",
|
|
"# Simple chain\n",
|
|
"############\n",
|
|
"# The framework requires the chain to return a string value.\n",
|
|
"chain = (\n",
|
|
" {\n",
|
|
" \"question\": itemgetter(\"messages\")\n",
|
|
" | RunnableLambda(extract_user_query_string),\n",
|
|
" \"chat_history\": itemgetter(\"messages\") | RunnableLambda(extract_chat_history),\n",
|
|
" }\n",
|
|
" | prompt\n",
|
|
" | model\n",
|
|
" | StrOutputParser()\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "366edd90-62a1-4d6f-8a65-0211fb24ca02",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"'Hello there! I\\'m here to help with your questions. Regarding your query about \"rag,\" it\\'s not something typically associated with a \"hello world\" bot, but I\\'m happy to explain!\\n\\nRAG, or Remote Angular GUI, is a tool that allows you to create and manage Angular applications remotely. It\\'s a way to develop and test Angular components and applications without needing to set up a local development environment. This can be particularly useful for teams working on distributed systems or for developers who prefer to work in a cloud-based environment.\\n\\nI hope this explanation of RAG has been helpful and interesting! If you have any other questions or need further clarification, feel free to ask.'"
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"application/databricks.mlflow.trace": "\"tr-ea2226413395413ba2cf52cffc523502\"",
|
|
"text/plain": [
|
|
"Trace(request_id=tr-ea2226413395413ba2cf52cffc523502)"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# This is the same input your chain's REST API will accept.\n",
|
|
"question = {\n",
|
|
" \"messages\": [\n",
|
|
" {\n",
|
|
" \"role\": \"user\",\n",
|
|
" \"content\": \"what is rag?\",\n",
|
|
" },\n",
|
|
" ]\n",
|
|
"}\n",
|
|
"\n",
|
|
"chain.invoke(question)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 0,
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+cell": {
|
|
"cellMetadata": {
|
|
"byteLimit": 2048000,
|
|
"rowLimit": 10000
|
|
},
|
|
"inputWidgets": {},
|
|
"nuid": "5d68e37d-0980-4a02-bf8d-885c3853f6c1",
|
|
"showTitle": false,
|
|
"title": ""
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"mlflow.models.set_model(model=model)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"application/vnd.databricks.v1+notebook": {
|
|
"dashboards": [],
|
|
"environmentMetadata": null,
|
|
"language": "python",
|
|
"notebookMetadata": {
|
|
"pythonIndentUnit": 4
|
|
},
|
|
"notebookName": "Untitled Notebook 2024-10-16 19:35:16",
|
|
"widgets": {}
|
|
},
|
|
"language_info": {
|
|
"name": "python"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|