litellm/tests/local_testing/test_proxy_custom_logger.py
Krish Dholakia 54ebdbf7ce
LiteLLM Minor Fixes & Improvements (10/15/2024) (#6242)
* feat(litellm_pre_call_utils.py): support forwarding request headers to backend llm api

* fix(litellm_pre_call_utils.py): handle custom litellm key header

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* (fix) prompt caching cost calculation OpenAI, Azure OpenAI  (#6231)

* fix prompt caching cost calculation

* fix testing for prompt cache cost calc

* fix(allowed_model_region): allow us as allowed region (#6234)

* test(router_code_coverage.py): check if all router functions are dire… (#6186)

* test(router_code_coverage.py): check if all router functions are directly tested

prevent regressions

* docs(configs.md): document all environment variables (#6185)

* docs: make it easier to find anthropic/openai prompt caching doc

* aded codecov yml (#6207)

* fix codecov.yaml

* run ci/cd again

* (refactor) caching use LLMCachingHandler for async_get_cache and set_cache  (#6208)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* fix test_embedding_caching_azure_individual_items_reordered

* (feat) prometheus have well defined latency buckets (#6211)

* fix prometheus have well defined latency buckets

* use a well define latency bucket

* use types file for prometheus logging

* add test for LATENCY_BUCKETS

* fix prom testing

* fix config.yml

* (refactor caching) use LLMCachingHandler for caching streaming responses  (#6210)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* bump (#6187)

* update code cov yaml

* fix config.yml

* add caching component to code cov

* fix config.yml ci/cd

* add coverage for proxy auth

* (refactor caching) use common `_retrieve_from_cache` helper  (#6212)

* use folder for caching

* fix importing caching

* fix clickhouse pyright

* fix linting

* fix correctly pass kwargs and args

* fix test case for embedding

* fix linting

* fix embedding caching logic

* fix refactor handle utils.py

* refactor async set stream cache

* fix linting

* refactor - use _retrieve_from_cache

* refactor use _convert_cached_result_to_model_response

* fix linting errors

* bump: version 1.49.2 → 1.49.3

* fix code cov components

* test(test_router_helpers.py): add router component unit tests

* test: add additional router tests

* test: add more router testing

* test: add more router testing + more mock functions

* ci(router_code_coverage.py): fix check

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* bump: version 1.49.3 → 1.49.4

* (refactor) use helper function `_assemble_complete_response_from_streaming_chunks` to assemble complete responses in caching and logging callbacks (#6220)

* (refactor) use _assemble_complete_response_from_streaming_chunks

* add unit test for test_assemble_complete_response_from_streaming_chunks_1

* fix assemble complete_streaming_response

* config add logging_testing

* add logging_coverage in codecov

* test test_assemble_complete_response_from_streaming_chunks_3

* add unit tests for _assemble_complete_response_from_streaming_chunks

* fix remove unused / junk function

* add test for streaming_chunks when error assembling

* (refactor) OTEL - use safe_set_attribute for setting attributes (#6226)

* otel - use safe_set_attribute for setting attributes

* fix OTEL only use safe_set_attribute

* fix(allowed_model_region): allow us as allowed region

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>

* fix(litellm_pre_call_utils.py): support 'us' region routing + fix header forwarding to filter on `x-` headers

* docs(customer_routing.md): fix region-based routing example

* feat(azure.py): handle empty arguments function call - azure

Closes https://github.com/BerriAI/litellm/issues/6241

* feat(guardrails_ai.py): support guardrails ai integration

Adds support for on-prem guardrails via guardrails ai

* fix(proxy/utils.py): prevent sql injection attack

Fixes https://huntr.com/bounties/a4f6d357-5b44-4e00-9cac-f1cc351211d2

* fix: fix linting errors

* fix(litellm_pre_call_utils.py): don't log litellm api key in proxy server request headers

* fix(litellm_pre_call_utils.py): don't forward stainless headers

* docs(guardrails_ai.md): add guardrails ai quick start to docs

* test: handle flaky test

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: yujonglee <yujonglee.dev@gmail.com>
Co-authored-by: Marcus Elwin <marcus@elwin.com>
2024-10-16 07:32:06 -07:00

299 lines
10 KiB
Python

import sys, os
import traceback
from dotenv import load_dotenv
load_dotenv()
import os, io, asyncio
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, time
import litellm
from litellm import embedding, completion, completion_cost, Timeout
from litellm import RateLimitError
import importlib, inspect
# test /chat/completion request to the proxy
from fastapi.testclient import TestClient
from fastapi import FastAPI
from litellm.proxy.proxy_server import (
router,
save_worker_config,
initialize,
startup_event,
) # Replace with the actual module where your FastAPI router is defined
filepath = os.path.dirname(os.path.abspath(__file__))
python_file_path = f"{filepath}/test_configs/custom_callbacks.py"
# @app.on_event("startup")
# async def wrapper_startup_event():
# initialize(config=config_fp)
# Use the app fixture in your client fixture
@pytest.fixture
def client():
filepath = os.path.dirname(os.path.abspath(__file__))
config_fp = f"{filepath}/test_configs/test_custom_logger.yaml"
app = FastAPI()
asyncio.run(initialize(config=config_fp))
app.include_router(router) # Include your router in the test app
return TestClient(app)
# Your bearer token
token = os.getenv("PROXY_MASTER_KEY")
headers = {"Authorization": f"Bearer {token}"}
print("Testing proxy custom logger")
def test_embedding(client):
try:
litellm.set_verbose = False
from litellm.proxy.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
# Your test data
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
# assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
print("my_custom_logger", my_custom_logger)
assert my_custom_logger.async_success_embedding is False
test_data = {"model": "azure-embedding-model", "input": ["hello"]}
response = client.post("/embeddings", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
print(
"vars my custom logger /embeddings",
vars(my_custom_logger),
"id",
id(my_custom_logger),
)
assert (
my_custom_logger.async_success_embedding is True
) # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert (
my_custom_logger.async_embedding_kwargs["model"] == "azure-embedding-model"
) # checks if kwargs passed to async_log_success_event are correct
kwargs = my_custom_logger.async_embedding_kwargs
litellm_params = kwargs.get("litellm_params")
metadata = litellm_params.get("metadata", None)
print("\n\n Metadata in custom logger kwargs", litellm_params.get("metadata"))
assert metadata is not None
assert "user_api_key" in metadata
assert "headers" in metadata
proxy_server_request = litellm_params.get("proxy_server_request")
model_info = litellm_params.get("model_info")
assert proxy_server_request == {
"url": "http://testserver/embeddings",
"method": "POST",
"headers": {
"host": "testserver",
"accept": "*/*",
"accept-encoding": "gzip, deflate",
"connection": "keep-alive",
"user-agent": "testclient",
"content-length": "54",
"content-type": "application/json",
},
"body": {"model": "azure-embedding-model", "input": ["hello"]},
}
assert model_info == {
"input_cost_per_token": 0.002,
"mode": "embedding",
"id": "hello",
"db_model": False,
}
result = response.json()
print(f"Received response: {result}")
print("Passed Embedding custom logger on proxy!")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
def test_chat_completion(client):
try:
# Your test data
litellm.set_verbose = False
from litellm.proxy.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
# import the initialized custom logger
print(litellm.callbacks)
# assert len(litellm.callbacks) == 1 # assert litellm is initialized with 1 callback
print("LiteLLM Callbacks", litellm.callbacks)
print("my_custom_logger", my_custom_logger)
assert my_custom_logger.async_success == False
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{"role": "user", "content": "write a litellm poem"},
],
"max_tokens": 10,
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
print("LiteLLM Callbacks", litellm.callbacks)
time.sleep(1) # sleep while waiting for callback to run
print(
"my_custom_logger in /chat/completions",
my_custom_logger,
"id",
id(my_custom_logger),
)
print("vars my custom logger, ", vars(my_custom_logger))
assert (
my_custom_logger.async_success == True
) # checks if the status of async_success is True, only the async_log_success_event can set this to true
assert (
my_custom_logger.async_completion_kwargs["model"] == "chatgpt-v-2"
) # checks if kwargs passed to async_log_success_event are correct
print(
"\n\n Custom Logger Async Completion args",
my_custom_logger.async_completion_kwargs,
)
litellm_params = my_custom_logger.async_completion_kwargs.get("litellm_params")
metadata = litellm_params.get("metadata", None)
print("\n\n Metadata in custom logger kwargs", litellm_params.get("metadata"))
assert metadata is not None
assert "user_api_key" in metadata
assert "user_api_key_metadata" in metadata
assert "headers" in metadata
config_model_info = litellm_params.get("model_info")
proxy_server_request_object = litellm_params.get("proxy_server_request")
assert config_model_info == {
"id": "gm",
"input_cost_per_token": 0.0002,
"mode": "chat",
"db_model": False,
}
assert "authorization" not in proxy_server_request_object["headers"]
assert proxy_server_request_object == {
"url": "http://testserver/chat/completions",
"method": "POST",
"headers": {
"host": "testserver",
"accept": "*/*",
"accept-encoding": "gzip, deflate",
"connection": "keep-alive",
"user-agent": "testclient",
"content-length": "123",
"content-type": "application/json",
},
"body": {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [{"role": "user", "content": "write a litellm poem"}],
"max_tokens": 10,
},
}
result = response.json()
print(f"Received response: {result}")
print("\nPassed /chat/completions with Custom Logger!")
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")
def test_chat_completion_stream(client):
try:
# Your test data
litellm.set_verbose = False
from litellm.proxy.utils import get_instance_fn
my_custom_logger = get_instance_fn(
value="custom_callbacks.my_custom_logger", config_file_path=python_file_path
)
print("id of initialized custom logger", id(my_custom_logger))
litellm.callbacks = [my_custom_logger]
import json
print("initialized proxy")
# import the initialized custom logger
print(litellm.callbacks)
print("LiteLLM Callbacks", litellm.callbacks)
print("my_custom_logger", my_custom_logger)
assert (
my_custom_logger.streaming_response_obj == None
) # no streaming response obj is set pre call
test_data = {
"model": "Azure OpenAI GPT-4 Canada",
"messages": [
{"role": "user", "content": "write 1 line poem about LiteLLM"},
],
"max_tokens": 40,
"stream": True, # streaming call
}
response = client.post("/chat/completions", json=test_data, headers=headers)
print("made request", response.status_code, response.text)
complete_response = ""
for line in response.iter_lines():
if line:
# Process the streaming data line here
print("\n\n Line", line)
print(line)
line = str(line)
json_data = line.replace("data: ", "")
if "[DONE]" in json_data:
break
# Parse the JSON string
data = json.loads(json_data)
print("\n\n decode_data", data)
# Access the content of choices[0]['message']['content']
content = data["choices"][0]["delta"].get("content", None) or ""
# Process the content as needed
print("Content:", content)
complete_response += content
print("\n\nHERE is the complete streaming response string", complete_response)
print("\n\nHERE IS the streaming Response from callback\n\n")
print(my_custom_logger.streaming_response_obj)
import time
time.sleep(0.5)
streamed_response = my_custom_logger.streaming_response_obj
assert (
complete_response == streamed_response["choices"][0]["message"]["content"]
)
except Exception as e:
pytest.fail(f"LiteLLM Proxy test failed. Exception {str(e)}")