litellm/tests/llm_translation/base_llm_unit_tests.py
Ishaan Jaff 6d4cf2d908
(fix) using Anthropic response_format={"type": "json_object"} (#6721)
* add support for response_format=json anthropic

* add test_json_response_format to baseLLM ChatTest

* fix test_litellm_anthropic_prompt_caching_tools

* fix test_anthropic_function_call_with_no_schema

* test test_create_json_tool_call_for_response_format
2024-11-12 19:06:00 -08:00

107 lines
3.1 KiB
Python

import asyncio
import httpx
import json
import pytest
import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, Mock, patch
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm.exceptions import BadRequestError
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import CustomStreamWrapper
# test_example.py
from abc import ABC, abstractmethod
class BaseLLMChatTest(ABC):
"""
Abstract base test class that enforces a common test across all test classes.
"""
@abstractmethod
def get_base_completion_call_args(self) -> dict:
"""Must return the base completion call args"""
pass
def test_content_list_handling(self):
"""Check if content list is supported by LLM API"""
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "Hello, how are you?"}],
}
]
response = litellm.completion(
**base_completion_call_args,
messages=messages,
)
assert response is not None
def test_message_with_name(self):
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{"role": "user", "content": "Hello", "name": "test_name"},
]
response = litellm.completion(**base_completion_call_args, messages=messages)
assert response is not None
def test_json_response_format(self):
"""
Test that the JSON response format is supported by the LLM API
"""
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
messages = [
{
"role": "system",
"content": "Your output should be a JSON object with no additional properties. ",
},
{
"role": "user",
"content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
},
]
response = litellm.completion(
**base_completion_call_args,
messages=messages,
response_format={"type": "json_object"},
)
print(response)
@pytest.fixture
def pdf_messages(self):
import base64
import requests
# URL of the file
url = "https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
url = f"data:application/pdf;base64,{encoded_file}"
image_content = [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": {"url": url},
},
]
image_messages = [{"role": "user", "content": image_content}]
return image_messages