LiteLLM fork
Find a file
2023-08-08 08:22:03 +03:00
.circleci workflow block testing 2023-08-05 10:33:39 -07:00
community_resources expand support for cohere models 2023-08-04 15:00:00 -07:00
docs code cleanup 2023-08-07 10:44:04 -07:00
litellm Added Openrouter support back 2023-08-08 08:22:03 +03:00
test-results Create t1.txt 2023-08-01 15:39:19 -07:00
.DS_Store better pyproject.toml 2023-08-05 10:31:34 -07:00
.env.example Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
.gitignore Expanded .env, added Poetry and basic Docstring 2023-08-02 12:05:35 +03:00
.readthedocs.yaml Update .readthedocs.yaml 2023-07-29 12:54:38 -07:00
LICENSE Initial commit 2023-07-26 17:09:52 -07:00
litellm_uuid.txt Added Openrouter support back 2023-08-08 08:22:03 +03:00
mkdocs.yml code cleanup 2023-08-07 10:44:04 -07:00
poetry.lock Added Openrouter support back 2023-08-08 08:22:03 +03:00
pyproject.toml fix v 2023-08-07 21:34:05 -07:00
README.md Update README.md 2023-08-07 10:26:19 -07:00
requirements.txt fix pydantic import 2023-08-07 21:16:18 -07:00

🚅 litellm

PyPI Version PyPI Version CircleCI Downloads litellm

Get Support / Join the community 👉

a simple & light package to call OpenAI, Azure, Cohere, Anthropic API Endpoints

litellm manages:

  • translating inputs to completion and embedding endpoints
  • guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']

usage

Read the docs - https://litellm.readthedocs.io/en/latest/

quick start

pip install litellm
from litellm import completion

## set ENV variables
# ENV variables can be set in .env file, too. Example in .env.example
os.environ["OPENAI_API_KEY"] = "openai key"
os.environ["COHERE_API_KEY"] = "cohere key"

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion("command-nightly", messages)

# azure openai call
response = completion("chatgpt-test", messages, azure=True)

# openrouter call
response = completion("google/palm-2-codechat-bison", messages)

Code Sample: Getting Started Notebook

Stable version

pip install litellm==0.1.345

Streaming Queries

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response.

response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
    print(chunk['choices'][0]['delta'])

hosted version

why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI, Cohere

Support

Contact us at ishaan@berri.ai / krrish@berri.ai