forked from phoenix/litellm-mirror
* refactor: move gemini translation logic inside the transformation.py file easier to isolate the gemini translation logic * fix(gemini-transformation): support multiple tool calls in message body Merges https://github.com/BerriAI/litellm/pull/6487/files * test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487 * fix(gemini-transformation): return tool calls for multiple tool calls * fix: support passing logprobs param for vertex + gemini * feat(vertex_ai): add logprobs support for gemini calls * fix(anthropic/chat/transformation.py): fix disable parallel tool use flag * fix: fix linting error * fix(_logging.py): log stacktrace information in json logs Closes https://github.com/BerriAI/litellm/issues/6497 * fix(utils.py): fix mem leak for async stream + completion Uses a global executor pool instead of creating a new thread on each request Fixes https://github.com/BerriAI/litellm/issues/6404 * fix(factory.py): handle tool call + content in assistant message for bedrock * fix: fix import * fix(factory.py): maintain support for content as a str in assistant response * fix: fix import * test: cleanup test * fix(vertex_and_google_ai_studio/): return none for content if no str value * test: retry flaky tests * (UI) Fix viewing members, keys in a team + added testing (#6514) * fix listing teams on ui * LiteLLM Minor Fixes & Improvements (10/28/2024) (#6475) * fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param Fixes https://github.com/BerriAI/litellm/issues/6456 * feat(anthropic/chat/transformation.py): support anthropic computer tool use Closes https://github.com/BerriAI/litellm/issues/6427 * fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai Fixes issue when trying to call vertex from vercel sdk * fix(main.py): add 'extra_headers' support for azure on all translation endpoints Fixes https://github.com/BerriAI/litellm/issues/6465 * fix: fix linting errors * fix(transformation.py): handle no beta headers for anthropic * test: cleanup test * fix: fix linting error * fix: fix linting errors * fix: fix linting errors * fix(transformation.py): handle dummy tool call * fix(main.py): fix linting error * fix(azure.py): pass required param * LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441) * fix(azure.py): handle /openai/deployment in azure api base * fix(factory.py): fix faulty anthropic tool result translation check Fixes https://github.com/BerriAI/litellm/issues/6422 * fix(gpt_transformation.py): add support for parallel_tool_calls to azure Fixes https://github.com/BerriAI/litellm/issues/6440 * fix(factory.py): support anthropic prompt caching for tool results * fix(vertex_ai/common_utils): don't pop non-null required field Fixes https://github.com/BerriAI/litellm/issues/6426 * feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini Closes https://github.com/BerriAI/litellm/issues/6434 * build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models Closes https://github.com/BerriAI/litellm/issues/6437 * fix(types/utils.py): fix linting * test: update test to include required fields * test: fix test * test: handle flaky test * test: remove e2e test - hitting gemini rate limits * Litellm dev 10 26 2024 (#6472) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected (#6471) * test test_dual_cache_get_set * unit testing for dual cache * fix async_set_cache_sadd * test_dual_cache_local_only * redis otel tracing + async support for latency routing (#6452) * docs(exception_mapping.md): add missing exception types Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183 * fix(main.py): register custom model pricing with specific key Ensure custom model pricing is registered to the specific model+provider key combination * test: make testing more robust for custom pricing * fix(redis_cache.py): instrument otel logging for sync redis calls ensures complete coverage for all redis cache calls * refactor: pass parent_otel_span for redis caching calls in router allows for more observability into what calls are causing latency issues * test: update tests with new params * refactor: ensure e2e otel tracing for router * refactor(router.py): add more otel tracing acrosss router catch all latency issues for router requests * fix: fix linting error * fix(router.py): fix linting error * fix: fix test * test: fix tests * fix(dual_cache.py): pass ttl to redis cache * fix: fix param * fix(dual_cache.py): set default value for parent_otel_span * fix(transformation.py): support 'response_format' for anthropic calls * fix(transformation.py): check for cache_control inside 'function' block * fix: fix linting error * fix: fix linting errors --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> --------- Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com> * ui new build * Add retry strat (#6520) Signed-off-by: dbczumar <corey.zumar@databricks.com> * (fix) slack alerting - don't spam the failed cost tracking alert for the same model (#6543) * fix use failing_model as cache key for failed_tracking_alert * fix use standard logging payload for getting response cost * fix kwargs.get("response_cost") * fix getting response cost * (feat) add XAI ChatCompletion Support (#6373) * init commit for XAI * add full logic for xai chat completion * test_completion_xai * docs xAI * add xai/grok-beta * test_xai_chat_config_get_openai_compatible_provider_info * test_xai_chat_config_map_openai_params * add xai streaming test --------- Signed-off-by: dbczumar <corey.zumar@databricks.com> Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
1173 lines
47 KiB
Python
1173 lines
47 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
import litellm
|
|
from litellm import get_optional_params
|
|
|
|
|
|
def test_completion_pydantic_obj_2():
|
|
from pydantic import BaseModel
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
|
|
class CalendarEvent(BaseModel):
|
|
name: str
|
|
date: str
|
|
participants: list[str]
|
|
|
|
class EventsList(BaseModel):
|
|
events: list[CalendarEvent]
|
|
|
|
messages = [
|
|
{"role": "user", "content": "List important events from the 20th century."}
|
|
]
|
|
expected_request_body = {
|
|
"contents": [
|
|
{
|
|
"role": "user",
|
|
"parts": [{"text": "List important events from the 20th century."}],
|
|
}
|
|
],
|
|
"generationConfig": {
|
|
"response_mime_type": "application/json",
|
|
"response_schema": {
|
|
"properties": {
|
|
"events": {
|
|
"items": {
|
|
"properties": {
|
|
"name": {"type": "string"},
|
|
"date": {"type": "string"},
|
|
"participants": {
|
|
"items": {"type": "string"},
|
|
"type": "array",
|
|
},
|
|
},
|
|
"required": [
|
|
"name",
|
|
"date",
|
|
"participants",
|
|
],
|
|
"type": "object",
|
|
},
|
|
"type": "array",
|
|
}
|
|
},
|
|
"required": [
|
|
"events",
|
|
],
|
|
"type": "object",
|
|
},
|
|
},
|
|
}
|
|
client = HTTPHandler()
|
|
with patch.object(client, "post", new=MagicMock()) as mock_post:
|
|
mock_post.return_value = expected_request_body
|
|
try:
|
|
litellm.completion(
|
|
model="gemini/gemini-1.5-pro",
|
|
messages=messages,
|
|
response_format=EventsList,
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
mock_post.assert_called_once()
|
|
|
|
print(mock_post.call_args.kwargs)
|
|
|
|
assert mock_post.call_args.kwargs["json"] == expected_request_body
|
|
|
|
|
|
def test_build_vertex_schema():
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.common_utils import (
|
|
_build_vertex_schema,
|
|
)
|
|
import json
|
|
|
|
schema = {
|
|
"type": "object",
|
|
"properties": {
|
|
"recipes": {
|
|
"type": "array",
|
|
"items": {
|
|
"type": "object",
|
|
"properties": {"recipe_name": {"type": "string"}},
|
|
"required": ["recipe_name"],
|
|
},
|
|
}
|
|
},
|
|
"required": ["recipes"],
|
|
}
|
|
|
|
new_schema = _build_vertex_schema(schema)
|
|
print(f"new_schema: {new_schema}")
|
|
assert new_schema["type"] == schema["type"]
|
|
assert new_schema["properties"] == schema["properties"]
|
|
assert "required" in new_schema and new_schema["required"] == schema["required"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"tools, key",
|
|
[
|
|
([{"googleSearchRetrieval": {}}], "googleSearchRetrieval"),
|
|
([{"code_execution": {}}], "code_execution"),
|
|
],
|
|
)
|
|
def test_vertex_tool_params(tools, key):
|
|
|
|
optional_params = get_optional_params(
|
|
model="gemini-1.5-pro",
|
|
custom_llm_provider="vertex_ai",
|
|
tools=tools,
|
|
)
|
|
print(optional_params)
|
|
assert optional_params["tools"][0][key] == {}
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"tool, expect_parameters",
|
|
[
|
|
(
|
|
{
|
|
"name": "test_function",
|
|
"description": "test_function_description",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"test_param": {"type": "string"}},
|
|
},
|
|
},
|
|
True,
|
|
),
|
|
(
|
|
{
|
|
"name": "test_function",
|
|
},
|
|
False,
|
|
),
|
|
],
|
|
)
|
|
def test_vertex_function_translation(tool, expect_parameters):
|
|
"""
|
|
If param not set, don't set it in the request
|
|
"""
|
|
|
|
tools = [tool]
|
|
optional_params = get_optional_params(
|
|
model="gemini-1.5-pro",
|
|
custom_llm_provider="vertex_ai",
|
|
tools=tools,
|
|
)
|
|
print(optional_params)
|
|
if expect_parameters:
|
|
assert "parameters" in optional_params["tools"][0]["function_declarations"][0]
|
|
else:
|
|
assert (
|
|
"parameters" not in optional_params["tools"][0]["function_declarations"][0]
|
|
)
|
|
|
|
|
|
def test_function_calling_with_gemini():
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
litellm.set_verbose = True
|
|
client = HTTPHandler()
|
|
with patch.object(client, "post", new=MagicMock()) as mock_post:
|
|
try:
|
|
litellm.completion(
|
|
model="gemini/gemini-1.5-pro-002",
|
|
messages=[
|
|
{
|
|
"content": [
|
|
{
|
|
"type": "text",
|
|
"text": "You are a helpful assistant that can interact with a computer to solve tasks.\n<IMPORTANT>\n* If user provides a path, you should NOT assume it's relative to the current working directory. Instead, you should explore the file system to find the file before working on it.\n</IMPORTANT>\n",
|
|
}
|
|
],
|
|
"role": "system",
|
|
},
|
|
{
|
|
"content": [{"type": "text", "text": "Hey, how's it going?"}],
|
|
"role": "user",
|
|
},
|
|
],
|
|
tools=[
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "finish",
|
|
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.",
|
|
},
|
|
},
|
|
],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
mock_post.assert_called_once()
|
|
print(mock_post.call_args.kwargs)
|
|
|
|
assert mock_post.call_args.kwargs["json"]["tools"] == [
|
|
{
|
|
"function_declarations": [
|
|
{
|
|
"name": "finish",
|
|
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.",
|
|
}
|
|
]
|
|
}
|
|
]
|
|
|
|
|
|
def test_multiple_function_call():
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
messages = [
|
|
{"role": "user", "content": [{"type": "text", "text": "do test"}]},
|
|
{
|
|
"role": "assistant",
|
|
"content": [{"type": "text", "text": "test"}],
|
|
"tool_calls": [
|
|
{
|
|
"index": 0,
|
|
"function": {"arguments": '{"arg": "test"}', "name": "test"},
|
|
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
|
|
"type": "function",
|
|
},
|
|
{
|
|
"index": 1,
|
|
"function": {"arguments": '{"arg": "test2"}', "name": "test2"},
|
|
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
|
|
"type": "function",
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
|
|
"role": "tool",
|
|
"name": "test",
|
|
"content": [{"type": "text", "text": "42"}],
|
|
},
|
|
{
|
|
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
|
|
"role": "tool",
|
|
"name": "test2",
|
|
"content": [{"type": "text", "text": "15"}],
|
|
},
|
|
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]},
|
|
]
|
|
|
|
response_body = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"text": 'The `default_api.test` function call returned a JSON object indicating a successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "42".\n\nSimilarly, the `default_api.test2` function call also returned a JSON object showing successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "15".\n\nIn short, both test functions executed successfully and returned different numerical string values ("42" and "15"). The significance of these numbers depends on the internal logic of the `test` and `test2` functions within the `default_api`.\n'
|
|
}
|
|
],
|
|
"role": "model",
|
|
},
|
|
"finishReason": "STOP",
|
|
"avgLogprobs": -0.20577410289219447,
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 128,
|
|
"candidatesTokenCount": 168,
|
|
"totalTokenCount": 296,
|
|
},
|
|
"modelVersion": "gemini-1.5-flash-002",
|
|
}
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.json.return_value = response_body
|
|
|
|
with patch.object(client, "post", return_value=mock_response) as mock_post:
|
|
r = litellm.completion(
|
|
messages=messages, model="gemini/gemini-1.5-flash-002", client=client
|
|
)
|
|
assert len(r.choices) > 0
|
|
|
|
assert mock_post.call_args.kwargs["json"] == {
|
|
"contents": [
|
|
{"role": "user", "parts": [{"text": "do test"}]},
|
|
{
|
|
"role": "model",
|
|
"parts": [
|
|
{"text": "test"},
|
|
{
|
|
"function_call": {
|
|
"name": "test",
|
|
"args": {
|
|
"fields": {
|
|
"key": "arg",
|
|
"value": {"string_value": "test"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
{
|
|
"function_call": {
|
|
"name": "test2",
|
|
"args": {
|
|
"fields": {
|
|
"key": "arg",
|
|
"value": {"string_value": "test2"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"parts": [
|
|
{
|
|
"function_response": {
|
|
"name": "test",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {"string_value": "42"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
{
|
|
"function_response": {
|
|
"name": "test2",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {"string_value": "15"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
]
|
|
},
|
|
{"role": "user", "parts": [{"text": "tell me the results."}]},
|
|
],
|
|
"generationConfig": {},
|
|
}
|
|
|
|
|
|
def test_multiple_function_call_changed_text_pos():
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
messages = [
|
|
{"role": "user", "content": [{"type": "text", "text": "do test"}]},
|
|
{
|
|
"tool_calls": [
|
|
{
|
|
"index": 0,
|
|
"function": {"arguments": '{"arg": "test"}', "name": "test"},
|
|
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
|
|
"type": "function",
|
|
},
|
|
{
|
|
"index": 1,
|
|
"function": {"arguments": '{"arg": "test2"}', "name": "test2"},
|
|
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
|
|
"type": "function",
|
|
},
|
|
],
|
|
"role": "assistant",
|
|
"content": [{"type": "text", "text": "test"}],
|
|
},
|
|
{
|
|
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
|
|
"role": "tool",
|
|
"name": "test2",
|
|
"content": [{"type": "text", "text": "15"}],
|
|
},
|
|
{
|
|
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
|
|
"role": "tool",
|
|
"name": "test",
|
|
"content": [{"type": "text", "text": "42"}],
|
|
},
|
|
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]},
|
|
]
|
|
|
|
response_body = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"text": 'The code executed two functions, `test` and `test2`.\n\n* **`test`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "42". This is likely a response from a function that processed the input "test" and returned a calculated or pre-defined value.\n\n* **`test2`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "15". Similar to `test`, this suggests a function that processes the input "test2" and returns a specific result.\n\nIn short, both functions appear to be simple tests that return different hardcoded or calculated values based on their input arguments.\n'
|
|
}
|
|
],
|
|
"role": "model",
|
|
},
|
|
"finishReason": "STOP",
|
|
"avgLogprobs": -0.32848488592332409,
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 128,
|
|
"candidatesTokenCount": 155,
|
|
"totalTokenCount": 283,
|
|
},
|
|
"modelVersion": "gemini-1.5-flash-002",
|
|
}
|
|
mock_response = MagicMock()
|
|
mock_response.json.return_value = response_body
|
|
|
|
with patch.object(client, "post", return_value=mock_response) as mock_post:
|
|
resp = litellm.completion(
|
|
messages=messages, model="gemini/gemini-1.5-flash-002", client=client
|
|
)
|
|
assert len(resp.choices) > 0
|
|
mock_post.assert_called_once()
|
|
|
|
assert mock_post.call_args.kwargs["json"]["contents"] == [
|
|
{"role": "user", "parts": [{"text": "do test"}]},
|
|
{
|
|
"role": "model",
|
|
"parts": [
|
|
{"text": "test"},
|
|
{
|
|
"function_call": {
|
|
"name": "test",
|
|
"args": {
|
|
"fields": {
|
|
"key": "arg",
|
|
"value": {"string_value": "test"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
{
|
|
"function_call": {
|
|
"name": "test2",
|
|
"args": {
|
|
"fields": {
|
|
"key": "arg",
|
|
"value": {"string_value": "test2"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
],
|
|
},
|
|
{
|
|
"parts": [
|
|
{
|
|
"function_response": {
|
|
"name": "test2",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {"string_value": "15"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
{
|
|
"function_response": {
|
|
"name": "test",
|
|
"response": {
|
|
"fields": {
|
|
"key": "content",
|
|
"value": {"string_value": "42"},
|
|
}
|
|
},
|
|
}
|
|
},
|
|
]
|
|
},
|
|
{"role": "user", "parts": [{"text": "tell me the results."}]},
|
|
]
|
|
|
|
|
|
def test_function_calling_with_gemini_multiple_results():
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
# Step 1: send the conversation and available functions to the model
|
|
messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
|
|
}
|
|
]
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_current_weather",
|
|
"description": "Get the current weather in a given location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"location": {
|
|
"type": "string",
|
|
"description": "The city and state",
|
|
},
|
|
"unit": {
|
|
"type": "string",
|
|
"enum": ["celsius", "fahrenheit"],
|
|
},
|
|
},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response_body = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"functionCall": {
|
|
"name": "get_current_weather",
|
|
"args": {"location": "San Francisco"},
|
|
}
|
|
},
|
|
{
|
|
"functionCall": {
|
|
"name": "get_current_weather",
|
|
"args": {"location": "Tokyo"},
|
|
}
|
|
},
|
|
{
|
|
"functionCall": {
|
|
"name": "get_current_weather",
|
|
"args": {"location": "Paris"},
|
|
}
|
|
},
|
|
],
|
|
"role": "model",
|
|
},
|
|
"finishReason": "STOP",
|
|
"avgLogprobs": -0.0040788948535919189,
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 90,
|
|
"candidatesTokenCount": 22,
|
|
"totalTokenCount": 112,
|
|
},
|
|
"modelVersion": "gemini-1.5-flash-002",
|
|
}
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.json.return_value = response_body
|
|
|
|
with patch.object(client, "post", return_value=mock_response):
|
|
response = litellm.completion(
|
|
model="gemini/gemini-1.5-flash-002",
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="required",
|
|
client=client,
|
|
)
|
|
print("Response\n", response)
|
|
|
|
assert len(response.choices[0].message.tool_calls) == 3
|
|
|
|
expected_locations = ["San Francisco", "Tokyo", "Paris"]
|
|
for idx, tool_call in enumerate(response.choices[0].message.tool_calls):
|
|
json_args = json.loads(tool_call.function.arguments)
|
|
assert json_args["location"] == expected_locations[idx]
|
|
|
|
|
|
def test_logprobs_unit_test():
|
|
from litellm import VertexGeminiConfig
|
|
|
|
result = VertexGeminiConfig()._transform_logprobs(
|
|
logprobs_result={
|
|
"topCandidates": [
|
|
{
|
|
"candidates": [
|
|
{"token": "```", "logProbability": -1.5496514e-06},
|
|
{"token": "`", "logProbability": -13.375002},
|
|
{"token": "``", "logProbability": -21.875002},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "tool", "logProbability": 0},
|
|
{"token": "too", "logProbability": -29.031433},
|
|
{"token": "to", "logProbability": -34.11199},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "code", "logProbability": 0},
|
|
{"token": "co", "logProbability": -28.114716},
|
|
{"token": "c", "logProbability": -29.283161},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "print", "logProbability": 0},
|
|
{"token": "p", "logProbability": -19.7494},
|
|
{"token": "prin", "logProbability": -21.117342},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "get", "logProbability": -16.811178},
|
|
{"token": "ge", "logProbability": -19.031078},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": "ap", "logProbability": -26.501019},
|
|
{"token": "a", "logProbability": -30.905857},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "ge", "logProbability": -19.984676},
|
|
{"token": "g", "logProbability": -20.527714},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "cur", "logProbability": -28.193565},
|
|
{"token": "cu", "logProbability": -29.636738},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "we", "logProbability": -27.887215},
|
|
{"token": "wea", "logProbability": -31.851082},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": "loc", "logProbability": -19.152641},
|
|
{"token": " location", "logProbability": -21.981709},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '="', "logProbability": -0.034490786},
|
|
{"token": "='", "logProbability": -3.398928},
|
|
{"token": "=", "logProbability": -7.6194153},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "San", "logProbability": -6.5561944e-06},
|
|
{"token": '\\"', "logProbability": -12.015556},
|
|
{"token": "Paris", "logProbability": -14.647776},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": " Francisco", "logProbability": -3.5760596e-07},
|
|
{"token": " Frans", "logProbability": -14.83527},
|
|
{"token": " francisco", "logProbability": -19.796852},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '"))', "logProbability": -6.079254e-06},
|
|
{"token": ",", "logProbability": -12.106029},
|
|
{"token": '",', "logProbability": -14.56927},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "print", "logProbability": -0.04140338},
|
|
{"token": "```", "logProbability": -3.2049975},
|
|
{"token": "p", "logProbability": -22.087523},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "get", "logProbability": -20.266342},
|
|
{"token": "de", "logProbability": -20.906395},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": "ap", "logProbability": -27.712265},
|
|
{"token": "a", "logProbability": -31.986958},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "g", "logProbability": -23.569286},
|
|
{"token": "ge", "logProbability": -23.829632},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "cur", "logProbability": -30.125153},
|
|
{"token": "curr", "logProbability": -31.756569},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "we", "logProbability": -27.743786},
|
|
{"token": "w", "logProbability": -30.594503},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": "loc", "logProbability": -21.177715},
|
|
{"token": " location", "logProbability": -22.166002},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '="', "logProbability": -1.5617967e-05},
|
|
{"token": "='", "logProbability": -11.080961},
|
|
{"token": "=", "logProbability": -15.164277},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "Tokyo", "logProbability": -3.0041514e-05},
|
|
{"token": "tokyo", "logProbability": -10.650261},
|
|
{"token": "Paris", "logProbability": -12.096886},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '"))', "logProbability": -1.1922384e-07},
|
|
{"token": '",', "logProbability": -16.61921},
|
|
{"token": ",", "logProbability": -17.911102},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "print", "logProbability": -3.5760596e-07},
|
|
{"token": "```", "logProbability": -14.949171},
|
|
{"token": "p", "logProbability": -24.321035},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "de", "logProbability": -27.885206},
|
|
{"token": "def", "logProbability": -28.40597},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": "ap", "logProbability": -25.905933},
|
|
{"token": "a", "logProbability": -30.408901},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "g", "logProbability": -22.274963},
|
|
{"token": "ge", "logProbability": -23.285828},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "cur", "logProbability": -28.442535},
|
|
{"token": "curr", "logProbability": -29.95087},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "we", "logProbability": -27.307909},
|
|
{"token": "w", "logProbability": -31.076736},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": "loc", "logProbability": -21.535915},
|
|
{"token": "lo", "logProbability": -23.028284},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '="', "logProbability": -8.821511e-06},
|
|
{"token": "='", "logProbability": -11.700986},
|
|
{"token": "=", "logProbability": -14.50358},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "Paris", "logProbability": 0},
|
|
{"token": "paris", "logProbability": -18.07075},
|
|
{"token": "Par", "logProbability": -21.911625},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": '"))', "logProbability": 0},
|
|
{"token": '")', "logProbability": -17.916853},
|
|
{"token": ",", "logProbability": -18.318272},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "ont", "logProbability": -1.2676506e30},
|
|
{"token": " п", "logProbability": -1.2676506e30},
|
|
]
|
|
},
|
|
{
|
|
"candidates": [
|
|
{"token": "```", "logProbability": -3.5763796e-06},
|
|
{"token": "print", "logProbability": -12.535343},
|
|
{"token": "``", "logProbability": -19.670813},
|
|
]
|
|
},
|
|
],
|
|
"chosenCandidates": [
|
|
{"token": "```", "logProbability": -1.5496514e-06},
|
|
{"token": "tool", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "code", "logProbability": 0},
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "print", "logProbability": 0},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": '="', "logProbability": -0.034490786},
|
|
{"token": "San", "logProbability": -6.5561944e-06},
|
|
{"token": " Francisco", "logProbability": -3.5760596e-07},
|
|
{"token": '"))', "logProbability": -6.079254e-06},
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "print", "logProbability": -0.04140338},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": '="', "logProbability": -1.5617967e-05},
|
|
{"token": "Tokyo", "logProbability": -3.0041514e-05},
|
|
{"token": '"))', "logProbability": -1.1922384e-07},
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "print", "logProbability": -3.5760596e-07},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "default", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "api", "logProbability": 0},
|
|
{"token": ".", "logProbability": 0},
|
|
{"token": "get", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "current", "logProbability": 0},
|
|
{"token": "_", "logProbability": 0},
|
|
{"token": "weather", "logProbability": 0},
|
|
{"token": "(", "logProbability": 0},
|
|
{"token": "location", "logProbability": 0},
|
|
{"token": '="', "logProbability": -8.821511e-06},
|
|
{"token": "Paris", "logProbability": 0},
|
|
{"token": '"))', "logProbability": 0},
|
|
{"token": "\n", "logProbability": 0},
|
|
{"token": "```", "logProbability": -3.5763796e-06},
|
|
],
|
|
}
|
|
)
|
|
|
|
print(result)
|
|
|
|
|
|
def test_logprobs():
|
|
litellm.set_verbose = True
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
|
|
response_body = {
|
|
"candidates": [
|
|
{
|
|
"content": {
|
|
"parts": [
|
|
{
|
|
"text": "I do not have access to real-time information, including current weather conditions. To get the current weather in San Francisco, I recommend checking a reliable weather website or app such as Google Weather, AccuWeather, or the National Weather Service.\n"
|
|
}
|
|
],
|
|
"role": "model",
|
|
},
|
|
"finishReason": "STOP",
|
|
"avgLogprobs": -0.04666396617889404,
|
|
"logprobsResult": {
|
|
"chosenCandidates": [
|
|
{"token": "I", "logProbability": -1.08472495e-05},
|
|
{"token": " do", "logProbability": -0.00012611414},
|
|
{"token": " not", "logProbability": 0},
|
|
{"token": " have", "logProbability": 0},
|
|
{"token": " access", "logProbability": -0.0008849616},
|
|
{"token": " to", "logProbability": 0},
|
|
{"token": " real", "logProbability": -1.1922384e-07},
|
|
{"token": "-", "logProbability": 0},
|
|
{"token": "time", "logProbability": 0},
|
|
{"token": " information", "logProbability": -2.2409657e-05},
|
|
{"token": ",", "logProbability": 0},
|
|
{"token": " including", "logProbability": 0},
|
|
{"token": " current", "logProbability": -0.14274147},
|
|
{"token": " weather", "logProbability": 0},
|
|
{"token": " conditions", "logProbability": -0.0056300927},
|
|
{"token": ".", "logProbability": -3.5760596e-07},
|
|
{"token": " ", "logProbability": -0.06392521},
|
|
{"token": "To", "logProbability": -2.3844768e-07},
|
|
{"token": " get", "logProbability": -0.058974747},
|
|
{"token": " the", "logProbability": 0},
|
|
{"token": " current", "logProbability": 0},
|
|
{"token": " weather", "logProbability": -2.3844768e-07},
|
|
{"token": " in", "logProbability": -2.3844768e-07},
|
|
{"token": " San", "logProbability": 0},
|
|
{"token": " Francisco", "logProbability": 0},
|
|
{"token": ",", "logProbability": 0},
|
|
{"token": " I", "logProbability": -0.6188003},
|
|
{"token": " recommend", "logProbability": -1.0370523e-05},
|
|
{"token": " checking", "logProbability": -0.00014005086},
|
|
{"token": " a", "logProbability": 0},
|
|
{"token": " reliable", "logProbability": -1.5496514e-06},
|
|
{"token": " weather", "logProbability": -8.344534e-07},
|
|
{"token": " website", "logProbability": -0.0078000566},
|
|
{"token": " or", "logProbability": -1.1922384e-07},
|
|
{"token": " app", "logProbability": 0},
|
|
{"token": " such", "logProbability": -0.9289338},
|
|
{"token": " as", "logProbability": 0},
|
|
{"token": " Google", "logProbability": -0.0046935496},
|
|
{"token": " Weather", "logProbability": 0},
|
|
{"token": ",", "logProbability": 0},
|
|
{"token": " Accu", "logProbability": 0},
|
|
{"token": "Weather", "logProbability": -0.00013909786},
|
|
{"token": ",", "logProbability": 0},
|
|
{"token": " or", "logProbability": -0.31303275},
|
|
{"token": " the", "logProbability": -0.17583296},
|
|
{"token": " National", "logProbability": -0.010806266},
|
|
{"token": " Weather", "logProbability": 0},
|
|
{"token": " Service", "logProbability": 0},
|
|
{"token": ".", "logProbability": -0.00068947335},
|
|
{"token": "\n", "logProbability": 0},
|
|
]
|
|
},
|
|
}
|
|
],
|
|
"usageMetadata": {
|
|
"promptTokenCount": 11,
|
|
"candidatesTokenCount": 50,
|
|
"totalTokenCount": 61,
|
|
},
|
|
"modelVersion": "gemini-1.5-flash-002",
|
|
}
|
|
mock_response = MagicMock()
|
|
mock_response.json.return_value = response_body
|
|
|
|
with patch.object(client, "post", return_value=mock_response):
|
|
|
|
resp = litellm.completion(
|
|
model="gemini/gemini-1.5-flash-002",
|
|
messages=[
|
|
{"role": "user", "content": "What's the weather like in San Francisco?"}
|
|
],
|
|
logprobs=True,
|
|
client=client,
|
|
)
|
|
print(resp)
|
|
|
|
assert resp.choices[0].logprobs is not None
|