litellm/tests/llm_translation/test_vertex.py
Krish Dholakia f79365df6e
LiteLLM Minor Fixes & Improvements (10/30/2024) (#6519)
* refactor: move gemini translation logic inside the transformation.py file

easier to isolate the gemini translation logic

* fix(gemini-transformation): support multiple tool calls in message body

Merges https://github.com/BerriAI/litellm/pull/6487/files

* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487

* fix(gemini-transformation): return tool calls for multiple tool calls

* fix: support passing logprobs param for vertex + gemini

* feat(vertex_ai): add logprobs support for gemini calls

* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag

* fix: fix linting error

* fix(_logging.py): log stacktrace information in json logs

Closes https://github.com/BerriAI/litellm/issues/6497

* fix(utils.py): fix mem leak for async stream + completion

Uses a global executor pool instead of creating a new thread on each request

Fixes https://github.com/BerriAI/litellm/issues/6404

* fix(factory.py): handle tool call + content in assistant message for bedrock

* fix: fix import

* fix(factory.py): maintain support for content as a str in assistant response

* fix: fix import

* test: cleanup test

* fix(vertex_and_google_ai_studio/): return none for content if no str value

* test: retry flaky tests

* (UI) Fix viewing members, keys in a team + added testing  (#6514)

* fix listing teams on ui

* LiteLLM Minor Fixes & Improvements (10/28/2024)  (#6475)

* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param

Fixes https://github.com/BerriAI/litellm/issues/6456

* feat(anthropic/chat/transformation.py): support anthropic computer tool use

Closes https://github.com/BerriAI/litellm/issues/6427

* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai

Fixes issue when trying to call vertex from vercel sdk

* fix(main.py): add 'extra_headers' support for azure on all translation endpoints

Fixes https://github.com/BerriAI/litellm/issues/6465

* fix: fix linting errors

* fix(transformation.py): handle no beta headers for anthropic

* test: cleanup test

* fix: fix linting error

* fix: fix linting errors

* fix: fix linting errors

* fix(transformation.py): handle dummy tool call

* fix(main.py): fix linting error

* fix(azure.py): pass required param

* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)

* fix(azure.py): handle /openai/deployment in azure api base

* fix(factory.py): fix faulty anthropic tool result translation check

Fixes https://github.com/BerriAI/litellm/issues/6422

* fix(gpt_transformation.py): add support for parallel_tool_calls to azure

Fixes https://github.com/BerriAI/litellm/issues/6440

* fix(factory.py): support anthropic prompt caching for tool results

* fix(vertex_ai/common_utils): don't pop non-null required field

Fixes https://github.com/BerriAI/litellm/issues/6426

* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini

Closes https://github.com/BerriAI/litellm/issues/6434

* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models

Closes https://github.com/BerriAI/litellm/issues/6437

* fix(types/utils.py): fix linting

* test: update test to include required fields

* test: fix test

* test: handle flaky test

* test: remove e2e test - hitting gemini rate limits

* Litellm dev 10 26 2024 (#6472)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected  (#6471)

* test test_dual_cache_get_set

* unit testing for dual cache

* fix async_set_cache_sadd

* test_dual_cache_local_only

* redis otel tracing + async support for latency routing (#6452)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* refactor: pass parent_otel_span for redis caching calls in router

allows for more observability into what calls are causing latency issues

* test: update tests with new params

* refactor: ensure e2e otel tracing for router

* refactor(router.py): add more otel tracing acrosss router

catch all latency issues for router requests

* fix: fix linting error

* fix(router.py): fix linting error

* fix: fix test

* test: fix tests

* fix(dual_cache.py): pass ttl to redis cache

* fix: fix param

* fix(dual_cache.py): set default value for parent_otel_span

* fix(transformation.py): support 'response_format' for anthropic calls

* fix(transformation.py): check for cache_control inside 'function' block

* fix: fix linting error

* fix: fix linting errors

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* ui new build

* Add retry strat (#6520)

Signed-off-by: dbczumar <corey.zumar@databricks.com>

* (fix) slack alerting - don't spam the failed cost tracking alert for the same model  (#6543)

* fix use failing_model as cache key for failed_tracking_alert

* fix use standard logging payload for getting response cost

* fix  kwargs.get("response_cost")

* fix getting response cost

* (feat) add XAI ChatCompletion Support  (#6373)

* init commit for XAI

* add full logic for xai chat completion

* test_completion_xai

* docs xAI

* add xai/grok-beta

* test_xai_chat_config_get_openai_compatible_provider_info

* test_xai_chat_config_map_openai_params

* add xai streaming test

---------

Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
2024-11-02 00:44:32 +05:30

1173 lines
47 KiB
Python

import json
import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
from unittest.mock import AsyncMock, MagicMock, patch
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import get_optional_params
def test_completion_pydantic_obj_2():
from pydantic import BaseModel
from litellm.llms.custom_httpx.http_handler import HTTPHandler
litellm.set_verbose = True
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
messages = [
{"role": "user", "content": "List important events from the 20th century."}
]
expected_request_body = {
"contents": [
{
"role": "user",
"parts": [{"text": "List important events from the 20th century."}],
}
],
"generationConfig": {
"response_mime_type": "application/json",
"response_schema": {
"properties": {
"events": {
"items": {
"properties": {
"name": {"type": "string"},
"date": {"type": "string"},
"participants": {
"items": {"type": "string"},
"type": "array",
},
},
"required": [
"name",
"date",
"participants",
],
"type": "object",
},
"type": "array",
}
},
"required": [
"events",
],
"type": "object",
},
},
}
client = HTTPHandler()
with patch.object(client, "post", new=MagicMock()) as mock_post:
mock_post.return_value = expected_request_body
try:
litellm.completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format=EventsList,
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
assert mock_post.call_args.kwargs["json"] == expected_request_body
def test_build_vertex_schema():
from litellm.llms.vertex_ai_and_google_ai_studio.common_utils import (
_build_vertex_schema,
)
import json
schema = {
"type": "object",
"properties": {
"recipes": {
"type": "array",
"items": {
"type": "object",
"properties": {"recipe_name": {"type": "string"}},
"required": ["recipe_name"],
},
}
},
"required": ["recipes"],
}
new_schema = _build_vertex_schema(schema)
print(f"new_schema: {new_schema}")
assert new_schema["type"] == schema["type"]
assert new_schema["properties"] == schema["properties"]
assert "required" in new_schema and new_schema["required"] == schema["required"]
@pytest.mark.parametrize(
"tools, key",
[
([{"googleSearchRetrieval": {}}], "googleSearchRetrieval"),
([{"code_execution": {}}], "code_execution"),
],
)
def test_vertex_tool_params(tools, key):
optional_params = get_optional_params(
model="gemini-1.5-pro",
custom_llm_provider="vertex_ai",
tools=tools,
)
print(optional_params)
assert optional_params["tools"][0][key] == {}
@pytest.mark.parametrize(
"tool, expect_parameters",
[
(
{
"name": "test_function",
"description": "test_function_description",
"parameters": {
"type": "object",
"properties": {"test_param": {"type": "string"}},
},
},
True,
),
(
{
"name": "test_function",
},
False,
),
],
)
def test_vertex_function_translation(tool, expect_parameters):
"""
If param not set, don't set it in the request
"""
tools = [tool]
optional_params = get_optional_params(
model="gemini-1.5-pro",
custom_llm_provider="vertex_ai",
tools=tools,
)
print(optional_params)
if expect_parameters:
assert "parameters" in optional_params["tools"][0]["function_declarations"][0]
else:
assert (
"parameters" not in optional_params["tools"][0]["function_declarations"][0]
)
def test_function_calling_with_gemini():
from litellm.llms.custom_httpx.http_handler import HTTPHandler
litellm.set_verbose = True
client = HTTPHandler()
with patch.object(client, "post", new=MagicMock()) as mock_post:
try:
litellm.completion(
model="gemini/gemini-1.5-pro-002",
messages=[
{
"content": [
{
"type": "text",
"text": "You are a helpful assistant that can interact with a computer to solve tasks.\n<IMPORTANT>\n* If user provides a path, you should NOT assume it's relative to the current working directory. Instead, you should explore the file system to find the file before working on it.\n</IMPORTANT>\n",
}
],
"role": "system",
},
{
"content": [{"type": "text", "text": "Hey, how's it going?"}],
"role": "user",
},
],
tools=[
{
"type": "function",
"function": {
"name": "finish",
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.",
},
},
],
client=client,
)
except Exception as e:
print(e)
mock_post.assert_called_once()
print(mock_post.call_args.kwargs)
assert mock_post.call_args.kwargs["json"]["tools"] == [
{
"function_declarations": [
{
"name": "finish",
"description": "Finish the interaction when the task is complete OR if the assistant cannot proceed further with the task.",
}
]
}
]
def test_multiple_function_call():
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
messages = [
{"role": "user", "content": [{"type": "text", "text": "do test"}]},
{
"role": "assistant",
"content": [{"type": "text", "text": "test"}],
"tool_calls": [
{
"index": 0,
"function": {"arguments": '{"arg": "test"}', "name": "test"},
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
"type": "function",
},
{
"index": 1,
"function": {"arguments": '{"arg": "test2"}', "name": "test2"},
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
"type": "function",
},
],
},
{
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
"role": "tool",
"name": "test",
"content": [{"type": "text", "text": "42"}],
},
{
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
"role": "tool",
"name": "test2",
"content": [{"type": "text", "text": "15"}],
},
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]},
]
response_body = {
"candidates": [
{
"content": {
"parts": [
{
"text": 'The `default_api.test` function call returned a JSON object indicating a successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "42".\n\nSimilarly, the `default_api.test2` function call also returned a JSON object showing successful execution. The `fields` key contains a nested dictionary with a `key` of "content" and a `value` with a `string_value` of "15".\n\nIn short, both test functions executed successfully and returned different numerical string values ("42" and "15"). The significance of these numbers depends on the internal logic of the `test` and `test2` functions within the `default_api`.\n'
}
],
"role": "model",
},
"finishReason": "STOP",
"avgLogprobs": -0.20577410289219447,
}
],
"usageMetadata": {
"promptTokenCount": 128,
"candidatesTokenCount": 168,
"totalTokenCount": 296,
},
"modelVersion": "gemini-1.5-flash-002",
}
mock_response = MagicMock()
mock_response.json.return_value = response_body
with patch.object(client, "post", return_value=mock_response) as mock_post:
r = litellm.completion(
messages=messages, model="gemini/gemini-1.5-flash-002", client=client
)
assert len(r.choices) > 0
assert mock_post.call_args.kwargs["json"] == {
"contents": [
{"role": "user", "parts": [{"text": "do test"}]},
{
"role": "model",
"parts": [
{"text": "test"},
{
"function_call": {
"name": "test",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test"},
}
},
}
},
{
"function_call": {
"name": "test2",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test2"},
}
},
}
},
],
},
{
"parts": [
{
"function_response": {
"name": "test",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "42"},
}
},
}
},
{
"function_response": {
"name": "test2",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "15"},
}
},
}
},
]
},
{"role": "user", "parts": [{"text": "tell me the results."}]},
],
"generationConfig": {},
}
def test_multiple_function_call_changed_text_pos():
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
messages = [
{"role": "user", "content": [{"type": "text", "text": "do test"}]},
{
"tool_calls": [
{
"index": 0,
"function": {"arguments": '{"arg": "test"}', "name": "test"},
"id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
"type": "function",
},
{
"index": 1,
"function": {"arguments": '{"arg": "test2"}', "name": "test2"},
"id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
"type": "function",
},
],
"role": "assistant",
"content": [{"type": "text", "text": "test"}],
},
{
"tool_call_id": "call_2414e8f9-283a-002b-182a-1290ab912c02",
"role": "tool",
"name": "test2",
"content": [{"type": "text", "text": "15"}],
},
{
"tool_call_id": "call_597e00e6-11d4-4ed2-94b2-27edee250aec",
"role": "tool",
"name": "test",
"content": [{"type": "text", "text": "42"}],
},
{"role": "user", "content": [{"type": "text", "text": "tell me the results."}]},
]
response_body = {
"candidates": [
{
"content": {
"parts": [
{
"text": 'The code executed two functions, `test` and `test2`.\n\n* **`test`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "42". This is likely a response from a function that processed the input "test" and returned a calculated or pre-defined value.\n\n* **`test2`**: Returned a dictionary indicating that the "key" field has a "value" field containing a string value of "15". Similar to `test`, this suggests a function that processes the input "test2" and returns a specific result.\n\nIn short, both functions appear to be simple tests that return different hardcoded or calculated values based on their input arguments.\n'
}
],
"role": "model",
},
"finishReason": "STOP",
"avgLogprobs": -0.32848488592332409,
}
],
"usageMetadata": {
"promptTokenCount": 128,
"candidatesTokenCount": 155,
"totalTokenCount": 283,
},
"modelVersion": "gemini-1.5-flash-002",
}
mock_response = MagicMock()
mock_response.json.return_value = response_body
with patch.object(client, "post", return_value=mock_response) as mock_post:
resp = litellm.completion(
messages=messages, model="gemini/gemini-1.5-flash-002", client=client
)
assert len(resp.choices) > 0
mock_post.assert_called_once()
assert mock_post.call_args.kwargs["json"]["contents"] == [
{"role": "user", "parts": [{"text": "do test"}]},
{
"role": "model",
"parts": [
{"text": "test"},
{
"function_call": {
"name": "test",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test"},
}
},
}
},
{
"function_call": {
"name": "test2",
"args": {
"fields": {
"key": "arg",
"value": {"string_value": "test2"},
}
},
}
},
],
},
{
"parts": [
{
"function_response": {
"name": "test2",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "15"},
}
},
}
},
{
"function_response": {
"name": "test",
"response": {
"fields": {
"key": "content",
"value": {"string_value": "42"},
}
},
}
},
]
},
{"role": "user", "parts": [{"text": "tell me the results."}]},
]
def test_function_calling_with_gemini_multiple_results():
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response_body = {
"candidates": [
{
"content": {
"parts": [
{
"functionCall": {
"name": "get_current_weather",
"args": {"location": "San Francisco"},
}
},
{
"functionCall": {
"name": "get_current_weather",
"args": {"location": "Tokyo"},
}
},
{
"functionCall": {
"name": "get_current_weather",
"args": {"location": "Paris"},
}
},
],
"role": "model",
},
"finishReason": "STOP",
"avgLogprobs": -0.0040788948535919189,
}
],
"usageMetadata": {
"promptTokenCount": 90,
"candidatesTokenCount": 22,
"totalTokenCount": 112,
},
"modelVersion": "gemini-1.5-flash-002",
}
mock_response = MagicMock()
mock_response.json.return_value = response_body
with patch.object(client, "post", return_value=mock_response):
response = litellm.completion(
model="gemini/gemini-1.5-flash-002",
messages=messages,
tools=tools,
tool_choice="required",
client=client,
)
print("Response\n", response)
assert len(response.choices[0].message.tool_calls) == 3
expected_locations = ["San Francisco", "Tokyo", "Paris"]
for idx, tool_call in enumerate(response.choices[0].message.tool_calls):
json_args = json.loads(tool_call.function.arguments)
assert json_args["location"] == expected_locations[idx]
def test_logprobs_unit_test():
from litellm import VertexGeminiConfig
result = VertexGeminiConfig()._transform_logprobs(
logprobs_result={
"topCandidates": [
{
"candidates": [
{"token": "```", "logProbability": -1.5496514e-06},
{"token": "`", "logProbability": -13.375002},
{"token": "``", "logProbability": -21.875002},
]
},
{
"candidates": [
{"token": "tool", "logProbability": 0},
{"token": "too", "logProbability": -29.031433},
{"token": "to", "logProbability": -34.11199},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "code", "logProbability": 0},
{"token": "co", "logProbability": -28.114716},
{"token": "c", "logProbability": -29.283161},
]
},
{
"candidates": [
{"token": "\n", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "print", "logProbability": 0},
{"token": "p", "logProbability": -19.7494},
{"token": "prin", "logProbability": -21.117342},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "default", "logProbability": 0},
{"token": "get", "logProbability": -16.811178},
{"token": "ge", "logProbability": -19.031078},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "api", "logProbability": 0},
{"token": "ap", "logProbability": -26.501019},
{"token": "a", "logProbability": -30.905857},
]
},
{
"candidates": [
{"token": ".", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "get", "logProbability": 0},
{"token": "ge", "logProbability": -19.984676},
{"token": "g", "logProbability": -20.527714},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "current", "logProbability": 0},
{"token": "cur", "logProbability": -28.193565},
{"token": "cu", "logProbability": -29.636738},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "weather", "logProbability": 0},
{"token": "we", "logProbability": -27.887215},
{"token": "wea", "logProbability": -31.851082},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "location", "logProbability": 0},
{"token": "loc", "logProbability": -19.152641},
{"token": " location", "logProbability": -21.981709},
]
},
{
"candidates": [
{"token": '="', "logProbability": -0.034490786},
{"token": "='", "logProbability": -3.398928},
{"token": "=", "logProbability": -7.6194153},
]
},
{
"candidates": [
{"token": "San", "logProbability": -6.5561944e-06},
{"token": '\\"', "logProbability": -12.015556},
{"token": "Paris", "logProbability": -14.647776},
]
},
{
"candidates": [
{"token": " Francisco", "logProbability": -3.5760596e-07},
{"token": " Frans", "logProbability": -14.83527},
{"token": " francisco", "logProbability": -19.796852},
]
},
{
"candidates": [
{"token": '"))', "logProbability": -6.079254e-06},
{"token": ",", "logProbability": -12.106029},
{"token": '",', "logProbability": -14.56927},
]
},
{
"candidates": [
{"token": "\n", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "print", "logProbability": -0.04140338},
{"token": "```", "logProbability": -3.2049975},
{"token": "p", "logProbability": -22.087523},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "default", "logProbability": 0},
{"token": "get", "logProbability": -20.266342},
{"token": "de", "logProbability": -20.906395},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "api", "logProbability": 0},
{"token": "ap", "logProbability": -27.712265},
{"token": "a", "logProbability": -31.986958},
]
},
{
"candidates": [
{"token": ".", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "get", "logProbability": 0},
{"token": "g", "logProbability": -23.569286},
{"token": "ge", "logProbability": -23.829632},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "current", "logProbability": 0},
{"token": "cur", "logProbability": -30.125153},
{"token": "curr", "logProbability": -31.756569},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "weather", "logProbability": 0},
{"token": "we", "logProbability": -27.743786},
{"token": "w", "logProbability": -30.594503},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "location", "logProbability": 0},
{"token": "loc", "logProbability": -21.177715},
{"token": " location", "logProbability": -22.166002},
]
},
{
"candidates": [
{"token": '="', "logProbability": -1.5617967e-05},
{"token": "='", "logProbability": -11.080961},
{"token": "=", "logProbability": -15.164277},
]
},
{
"candidates": [
{"token": "Tokyo", "logProbability": -3.0041514e-05},
{"token": "tokyo", "logProbability": -10.650261},
{"token": "Paris", "logProbability": -12.096886},
]
},
{
"candidates": [
{"token": '"))', "logProbability": -1.1922384e-07},
{"token": '",', "logProbability": -16.61921},
{"token": ",", "logProbability": -17.911102},
]
},
{
"candidates": [
{"token": "\n", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "print", "logProbability": -3.5760596e-07},
{"token": "```", "logProbability": -14.949171},
{"token": "p", "logProbability": -24.321035},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "default", "logProbability": 0},
{"token": "de", "logProbability": -27.885206},
{"token": "def", "logProbability": -28.40597},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "api", "logProbability": 0},
{"token": "ap", "logProbability": -25.905933},
{"token": "a", "logProbability": -30.408901},
]
},
{
"candidates": [
{"token": ".", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "get", "logProbability": 0},
{"token": "g", "logProbability": -22.274963},
{"token": "ge", "logProbability": -23.285828},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "current", "logProbability": 0},
{"token": "cur", "logProbability": -28.442535},
{"token": "curr", "logProbability": -29.95087},
]
},
{
"candidates": [
{"token": "_", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "weather", "logProbability": 0},
{"token": "we", "logProbability": -27.307909},
{"token": "w", "logProbability": -31.076736},
]
},
{
"candidates": [
{"token": "(", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "location", "logProbability": 0},
{"token": "loc", "logProbability": -21.535915},
{"token": "lo", "logProbability": -23.028284},
]
},
{
"candidates": [
{"token": '="', "logProbability": -8.821511e-06},
{"token": "='", "logProbability": -11.700986},
{"token": "=", "logProbability": -14.50358},
]
},
{
"candidates": [
{"token": "Paris", "logProbability": 0},
{"token": "paris", "logProbability": -18.07075},
{"token": "Par", "logProbability": -21.911625},
]
},
{
"candidates": [
{"token": '"))', "logProbability": 0},
{"token": '")', "logProbability": -17.916853},
{"token": ",", "logProbability": -18.318272},
]
},
{
"candidates": [
{"token": "\n", "logProbability": 0},
{"token": "ont", "logProbability": -1.2676506e30},
{"token": " п", "logProbability": -1.2676506e30},
]
},
{
"candidates": [
{"token": "```", "logProbability": -3.5763796e-06},
{"token": "print", "logProbability": -12.535343},
{"token": "``", "logProbability": -19.670813},
]
},
],
"chosenCandidates": [
{"token": "```", "logProbability": -1.5496514e-06},
{"token": "tool", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "code", "logProbability": 0},
{"token": "\n", "logProbability": 0},
{"token": "print", "logProbability": 0},
{"token": "(", "logProbability": 0},
{"token": "default", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "api", "logProbability": 0},
{"token": ".", "logProbability": 0},
{"token": "get", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "current", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "weather", "logProbability": 0},
{"token": "(", "logProbability": 0},
{"token": "location", "logProbability": 0},
{"token": '="', "logProbability": -0.034490786},
{"token": "San", "logProbability": -6.5561944e-06},
{"token": " Francisco", "logProbability": -3.5760596e-07},
{"token": '"))', "logProbability": -6.079254e-06},
{"token": "\n", "logProbability": 0},
{"token": "print", "logProbability": -0.04140338},
{"token": "(", "logProbability": 0},
{"token": "default", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "api", "logProbability": 0},
{"token": ".", "logProbability": 0},
{"token": "get", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "current", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "weather", "logProbability": 0},
{"token": "(", "logProbability": 0},
{"token": "location", "logProbability": 0},
{"token": '="', "logProbability": -1.5617967e-05},
{"token": "Tokyo", "logProbability": -3.0041514e-05},
{"token": '"))', "logProbability": -1.1922384e-07},
{"token": "\n", "logProbability": 0},
{"token": "print", "logProbability": -3.5760596e-07},
{"token": "(", "logProbability": 0},
{"token": "default", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "api", "logProbability": 0},
{"token": ".", "logProbability": 0},
{"token": "get", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "current", "logProbability": 0},
{"token": "_", "logProbability": 0},
{"token": "weather", "logProbability": 0},
{"token": "(", "logProbability": 0},
{"token": "location", "logProbability": 0},
{"token": '="', "logProbability": -8.821511e-06},
{"token": "Paris", "logProbability": 0},
{"token": '"))', "logProbability": 0},
{"token": "\n", "logProbability": 0},
{"token": "```", "logProbability": -3.5763796e-06},
],
}
)
print(result)
def test_logprobs():
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
client = HTTPHandler()
response_body = {
"candidates": [
{
"content": {
"parts": [
{
"text": "I do not have access to real-time information, including current weather conditions. To get the current weather in San Francisco, I recommend checking a reliable weather website or app such as Google Weather, AccuWeather, or the National Weather Service.\n"
}
],
"role": "model",
},
"finishReason": "STOP",
"avgLogprobs": -0.04666396617889404,
"logprobsResult": {
"chosenCandidates": [
{"token": "I", "logProbability": -1.08472495e-05},
{"token": " do", "logProbability": -0.00012611414},
{"token": " not", "logProbability": 0},
{"token": " have", "logProbability": 0},
{"token": " access", "logProbability": -0.0008849616},
{"token": " to", "logProbability": 0},
{"token": " real", "logProbability": -1.1922384e-07},
{"token": "-", "logProbability": 0},
{"token": "time", "logProbability": 0},
{"token": " information", "logProbability": -2.2409657e-05},
{"token": ",", "logProbability": 0},
{"token": " including", "logProbability": 0},
{"token": " current", "logProbability": -0.14274147},
{"token": " weather", "logProbability": 0},
{"token": " conditions", "logProbability": -0.0056300927},
{"token": ".", "logProbability": -3.5760596e-07},
{"token": " ", "logProbability": -0.06392521},
{"token": "To", "logProbability": -2.3844768e-07},
{"token": " get", "logProbability": -0.058974747},
{"token": " the", "logProbability": 0},
{"token": " current", "logProbability": 0},
{"token": " weather", "logProbability": -2.3844768e-07},
{"token": " in", "logProbability": -2.3844768e-07},
{"token": " San", "logProbability": 0},
{"token": " Francisco", "logProbability": 0},
{"token": ",", "logProbability": 0},
{"token": " I", "logProbability": -0.6188003},
{"token": " recommend", "logProbability": -1.0370523e-05},
{"token": " checking", "logProbability": -0.00014005086},
{"token": " a", "logProbability": 0},
{"token": " reliable", "logProbability": -1.5496514e-06},
{"token": " weather", "logProbability": -8.344534e-07},
{"token": " website", "logProbability": -0.0078000566},
{"token": " or", "logProbability": -1.1922384e-07},
{"token": " app", "logProbability": 0},
{"token": " such", "logProbability": -0.9289338},
{"token": " as", "logProbability": 0},
{"token": " Google", "logProbability": -0.0046935496},
{"token": " Weather", "logProbability": 0},
{"token": ",", "logProbability": 0},
{"token": " Accu", "logProbability": 0},
{"token": "Weather", "logProbability": -0.00013909786},
{"token": ",", "logProbability": 0},
{"token": " or", "logProbability": -0.31303275},
{"token": " the", "logProbability": -0.17583296},
{"token": " National", "logProbability": -0.010806266},
{"token": " Weather", "logProbability": 0},
{"token": " Service", "logProbability": 0},
{"token": ".", "logProbability": -0.00068947335},
{"token": "\n", "logProbability": 0},
]
},
}
],
"usageMetadata": {
"promptTokenCount": 11,
"candidatesTokenCount": 50,
"totalTokenCount": 61,
},
"modelVersion": "gemini-1.5-flash-002",
}
mock_response = MagicMock()
mock_response.json.return_value = response_body
with patch.object(client, "post", return_value=mock_response):
resp = litellm.completion(
model="gemini/gemini-1.5-flash-002",
messages=[
{"role": "user", "content": "What's the weather like in San Francisco?"}
],
logprobs=True,
client=client,
)
print(resp)
assert resp.choices[0].logprobs is not None