litellm/tests/local_testing/test_function_calling.py
Krish Dholakia f79365df6e
LiteLLM Minor Fixes & Improvements (10/30/2024) (#6519)
* refactor: move gemini translation logic inside the transformation.py file

easier to isolate the gemini translation logic

* fix(gemini-transformation): support multiple tool calls in message body

Merges https://github.com/BerriAI/litellm/pull/6487/files

* test(test_vertex.py): add remaining tests from https://github.com/BerriAI/litellm/pull/6487

* fix(gemini-transformation): return tool calls for multiple tool calls

* fix: support passing logprobs param for vertex + gemini

* feat(vertex_ai): add logprobs support for gemini calls

* fix(anthropic/chat/transformation.py): fix disable parallel tool use flag

* fix: fix linting error

* fix(_logging.py): log stacktrace information in json logs

Closes https://github.com/BerriAI/litellm/issues/6497

* fix(utils.py): fix mem leak for async stream + completion

Uses a global executor pool instead of creating a new thread on each request

Fixes https://github.com/BerriAI/litellm/issues/6404

* fix(factory.py): handle tool call + content in assistant message for bedrock

* fix: fix import

* fix(factory.py): maintain support for content as a str in assistant response

* fix: fix import

* test: cleanup test

* fix(vertex_and_google_ai_studio/): return none for content if no str value

* test: retry flaky tests

* (UI) Fix viewing members, keys in a team + added testing  (#6514)

* fix listing teams on ui

* LiteLLM Minor Fixes & Improvements (10/28/2024)  (#6475)

* fix(anthropic/chat/transformation.py): support anthropic disable_parallel_tool_use param

Fixes https://github.com/BerriAI/litellm/issues/6456

* feat(anthropic/chat/transformation.py): support anthropic computer tool use

Closes https://github.com/BerriAI/litellm/issues/6427

* fix(vertex_ai/common_utils.py): parse out '$schema' when calling vertex ai

Fixes issue when trying to call vertex from vercel sdk

* fix(main.py): add 'extra_headers' support for azure on all translation endpoints

Fixes https://github.com/BerriAI/litellm/issues/6465

* fix: fix linting errors

* fix(transformation.py): handle no beta headers for anthropic

* test: cleanup test

* fix: fix linting error

* fix: fix linting errors

* fix: fix linting errors

* fix(transformation.py): handle dummy tool call

* fix(main.py): fix linting error

* fix(azure.py): pass required param

* LiteLLM Minor Fixes & Improvements (10/24/2024) (#6441)

* fix(azure.py): handle /openai/deployment in azure api base

* fix(factory.py): fix faulty anthropic tool result translation check

Fixes https://github.com/BerriAI/litellm/issues/6422

* fix(gpt_transformation.py): add support for parallel_tool_calls to azure

Fixes https://github.com/BerriAI/litellm/issues/6440

* fix(factory.py): support anthropic prompt caching for tool results

* fix(vertex_ai/common_utils): don't pop non-null required field

Fixes https://github.com/BerriAI/litellm/issues/6426

* feat(vertex_ai.py): support code_execution tool call for vertex ai + gemini

Closes https://github.com/BerriAI/litellm/issues/6434

* build(model_prices_and_context_window.json): Add 'supports_assistant_prefill' for bedrock claude-3-5-sonnet v2 models

Closes https://github.com/BerriAI/litellm/issues/6437

* fix(types/utils.py): fix linting

* test: update test to include required fields

* test: fix test

* test: handle flaky test

* test: remove e2e test - hitting gemini rate limits

* Litellm dev 10 26 2024 (#6472)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* (Testing) Add unit testing for DualCache - ensure in memory cache is used when expected  (#6471)

* test test_dual_cache_get_set

* unit testing for dual cache

* fix async_set_cache_sadd

* test_dual_cache_local_only

* redis otel tracing + async support for latency routing (#6452)

* docs(exception_mapping.md): add missing exception types

Fixes https://github.com/Aider-AI/aider/issues/2120#issuecomment-2438971183

* fix(main.py): register custom model pricing with specific key

Ensure custom model pricing is registered to the specific model+provider key combination

* test: make testing more robust for custom pricing

* fix(redis_cache.py): instrument otel logging for sync redis calls

ensures complete coverage for all redis cache calls

* refactor: pass parent_otel_span for redis caching calls in router

allows for more observability into what calls are causing latency issues

* test: update tests with new params

* refactor: ensure e2e otel tracing for router

* refactor(router.py): add more otel tracing acrosss router

catch all latency issues for router requests

* fix: fix linting error

* fix(router.py): fix linting error

* fix: fix test

* test: fix tests

* fix(dual_cache.py): pass ttl to redis cache

* fix: fix param

* fix(dual_cache.py): set default value for parent_otel_span

* fix(transformation.py): support 'response_format' for anthropic calls

* fix(transformation.py): check for cache_control inside 'function' block

* fix: fix linting error

* fix: fix linting errors

---------

Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>

---------

Co-authored-by: Krish Dholakia <krrishdholakia@gmail.com>

* ui new build

* Add retry strat (#6520)

Signed-off-by: dbczumar <corey.zumar@databricks.com>

* (fix) slack alerting - don't spam the failed cost tracking alert for the same model  (#6543)

* fix use failing_model as cache key for failed_tracking_alert

* fix use standard logging payload for getting response cost

* fix  kwargs.get("response_cost")

* fix getting response cost

* (feat) add XAI ChatCompletion Support  (#6373)

* init commit for XAI

* add full logic for xai chat completion

* test_completion_xai

* docs xAI

* add xai/grok-beta

* test_xai_chat_config_get_openai_compatible_provider_info

* test_xai_chat_config_map_openai_params

* add xai streaming test

---------

Signed-off-by: dbczumar <corey.zumar@databricks.com>
Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com>
Co-authored-by: Corey Zumar <39497902+dbczumar@users.noreply.github.com>
2024-11-02 00:44:32 +05:30

621 lines
25 KiB
Python

import os
import sys
import traceback
from dotenv import load_dotenv
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest
import litellm
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
litellm.num_retries = 0
litellm.cache = None
# litellm.set_verbose=True
import json
# litellm.success_callback = ["langfuse"]
def get_current_weather(location, unit="fahrenheit"):
"""Get the current weather in a given location"""
if "tokyo" in location.lower():
return json.dumps({"location": "Tokyo", "temperature": "10", "unit": "celsius"})
elif "san francisco" in location.lower():
return json.dumps(
{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}
)
elif "paris" in location.lower():
return json.dumps({"location": "Paris", "temperature": "22", "unit": "celsius"})
else:
return json.dumps({"location": location, "temperature": "unknown"})
# Example dummy function hard coded to return the same weather
# In production, this could be your backend API or an external API
@pytest.mark.parametrize(
"model",
[
"gpt-3.5-turbo-1106",
# "mistral/mistral-large-latest",
"claude-3-haiku-20240307",
"gemini/gemini-1.5-pro",
"anthropic.claude-3-sonnet-20240229-v1:0",
# "groq/llama3-8b-8192",
],
)
@pytest.mark.flaky(retries=3, delay=1)
def test_aaparallel_function_call(model):
try:
litellm.set_verbose = True
litellm.modify_params = True
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model=model,
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("Expecting there to be 3 tool calls")
assert (
len(tool_calls) > 0
) # this has to call the function for SF, Tokyo and paris
# Step 2: check if the model wanted to call a function
print(f"tool_calls: {tool_calls}")
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
if function_name not in available_functions:
# the model called a function that does not exist in available_functions - don't try calling anything
return
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
# tools=tools,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except litellm.InternalServerError as e:
print(e)
except litellm.RateLimitError as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_parallel_function_call()
from litellm.types.utils import ChatCompletionMessageToolCall, Function, Message
@pytest.mark.parametrize(
"model, provider",
[
(
"anthropic.claude-3-sonnet-20240229-v1:0",
"bedrock",
),
("claude-3-haiku-20240307", "anthropic"),
],
)
@pytest.mark.parametrize(
"messages, expected_error_msg",
[
(
[
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
},
Message(
content="Here are the current weather conditions for San Francisco, Tokyo, and Paris:",
role="assistant",
tool_calls=[
ChatCompletionMessageToolCall(
index=1,
function=Function(
arguments='{"location": "San Francisco, CA", "unit": "fahrenheit"}',
name="get_current_weather",
),
id="tooluse_Jj98qn6xQlOP_PiQr-w9iA",
type="function",
)
],
function_call=None,
),
{
"tool_call_id": "tooluse_Jj98qn6xQlOP_PiQr-w9iA",
"role": "tool",
"name": "get_current_weather",
"content": '{"location": "San Francisco", "temperature": "72", "unit": "fahrenheit"}',
},
],
True,
),
(
[
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris? - give me 3 responses",
}
],
False,
),
],
)
def test_parallel_function_call_anthropic_error_msg(
model, provider, messages, expected_error_msg
):
"""
Anthropic doesn't support tool calling without `tools=` param specified.
Ensure this error is thrown when `tools=` param is not specified. But tool call requests are made.
Reference Issue: https://github.com/BerriAI/litellm/issues/5747, https://github.com/BerriAI/litellm/issues/5388
"""
try:
litellm.set_verbose = True
messages = messages
if expected_error_msg:
with pytest.raises(litellm.UnsupportedParamsError) as e:
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
else:
second_response = litellm.completion(
model=model,
messages=messages,
temperature=0.2,
seed=22,
drop_params=True,
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except litellm.InternalServerError as e:
print(e)
except litellm.RateLimitError as e:
print(e)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
def test_parallel_function_call_stream():
try:
litellm.set_verbose = True
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "user",
"content": "What's the weather like in San Francisco, Tokyo, and Paris?",
}
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="gpt-3.5-turbo-1106",
messages=messages,
tools=tools,
stream=True,
tool_choice="auto", # auto is default, but we'll be explicit
complete_response=True,
)
print("Response\n", response)
# for chunk in response:
# print(chunk)
response_message = response.choices[0].message
tool_calls = response_message.tool_calls
print("length of tool calls", len(tool_calls))
print("Expecting there to be 3 tool calls")
assert (
len(tool_calls) > 1
) # this has to call the function for SF, Tokyo and parise
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="gpt-3.5-turbo-1106", messages=messages, temperature=0.2, seed=22
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
return second_response
except Exception as e:
pytest.fail(f"Error occurred: {e}")
# test_parallel_function_call_stream()
@pytest.mark.skip(
reason="Flaky test. Groq function calling is not reliable for ci/cd testing."
)
def test_groq_parallel_function_call():
litellm.set_verbose = True
try:
# Step 1: send the conversation and available functions to the model
messages = [
{
"role": "system",
"content": "You are a function calling LLM that uses the data extracted from get_current_weather to answer questions about the weather in San Francisco.",
},
{
"role": "user",
"content": "What's the weather like in San Francisco?",
},
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
response = litellm.completion(
model="groq/llama2-70b-4096",
messages=messages,
tools=tools,
tool_choice="auto", # auto is default, but we'll be explicit
)
print("Response\n", response)
response_message = response.choices[0].message
if hasattr(response_message, "tool_calls"):
tool_calls = response_message.tool_calls
assert isinstance(
response.choices[0].message.tool_calls[0].function.name, str
)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
print("length of tool calls", len(tool_calls))
# Step 2: check if the model wanted to call a function
if tool_calls:
# Step 3: call the function
# Note: the JSON response may not always be valid; be sure to handle errors
available_functions = {
"get_current_weather": get_current_weather,
} # only one function in this example, but you can have multiple
messages.append(
response_message
) # extend conversation with assistant's reply
print("Response message\n", response_message)
# Step 4: send the info for each function call and function response to the model
for tool_call in tool_calls:
function_name = tool_call.function.name
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(
location=function_args.get("location"),
unit=function_args.get("unit"),
)
messages.append(
{
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": function_response,
}
) # extend conversation with function response
print(f"messages: {messages}")
second_response = litellm.completion(
model="groq/llama2-70b-4096", messages=messages
) # get a new response from the model where it can see the function response
print("second response\n", second_response)
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"model",
[
"anthropic.claude-3-sonnet-20240229-v1:0",
"claude-3-haiku-20240307",
],
)
def test_anthropic_function_call_with_no_schema(model):
"""
Relevant Issue: https://github.com/BerriAI/litellm/issues/6012
"""
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in New York",
},
}
]
messages = [
{"role": "user", "content": "What is the current temperature in New York?"}
]
completion(model=model, messages=messages, tools=tools, tool_choice="auto")
@pytest.mark.parametrize(
"model",
[
"anthropic/claude-3-5-sonnet-20241022",
"bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
],
)
def test_passing_tool_result_as_list(model):
litellm.set_verbose = True
messages = [
{
"content": [
{
"type": "text",
"text": "You are a helpful assistant that have the ability to interact with a computer to solve tasks.",
}
],
"role": "system",
},
{
"content": [
{
"type": "text",
"text": "Write a git commit message for the current staging area and commit the changes.",
}
],
"role": "user",
},
{
"content": [
{
"type": "text",
"text": "I'll help you commit the changes. Let me first check the git status to see what changes are staged.",
}
],
"role": "assistant",
"tool_calls": [
{
"index": 1,
"function": {
"arguments": '{"command": "git status", "thought": "Checking git status to see staged changes"}',
"name": "execute_bash",
},
"id": "toolu_01V1paXrun4CVetdAGiQaZG5",
"type": "function",
}
],
},
{
"content": [
{
"type": "text",
"text": 'OBSERVATION:\nOn branch master\r\n\r\nNo commits yet\r\n\r\nChanges to be committed:\r\n (use "git rm --cached <file>..." to unstage)\r\n\tnew file: hello.py\r\n\r\n\r\n[Python Interpreter: /openhands/poetry/openhands-ai-5O4_aCHf-py3.12/bin/python]\nroot@openhands-workspace:/workspace # \n[Command finished with exit code 0]',
}
],
"role": "tool",
"tool_call_id": "toolu_01V1paXrun4CVetdAGiQaZG5",
"name": "execute_bash",
"cache_control": {"type": "ephemeral"},
},
]
tools = [
{
"type": "function",
"function": {
"name": "execute_bash",
"description": 'Execute a bash command in the terminal.\n* Long running commands: For commands that may run indefinitely, it should be run in the background and the output should be redirected to a file, e.g. command = `python3 app.py > server.log 2>&1 &`.\n* Interactive: If a bash command returns exit code `-1`, this means the process is not yet finished. The assistant must then send a second call to terminal with an empty `command` (which will retrieve any additional logs), or it can send additional text (set `command` to the text) to STDIN of the running process, or it can send command=`ctrl+c` to interrupt the process.\n* Timeout: If a command execution result says "Command timed out. Sending SIGINT to the process", the assistant should retry running the command in the background.\n',
"parameters": {
"type": "object",
"properties": {
"thought": {
"type": "string",
"description": "Reasoning about the action to take.",
},
"command": {
"type": "string",
"description": "The bash command to execute. Can be empty to view additional logs when previous exit code is `-1`. Can be `ctrl+c` to interrupt the currently running process.",
},
},
"required": ["command"],
},
},
},
{
"type": "function",
"function": {
"name": "finish",
"description": "Finish the interaction.\n* Do this if the task is complete.\n* Do this if the assistant cannot proceed further with the task.\n",
},
},
{
"type": "function",
"function": {
"name": "str_replace_editor",
"description": "Custom editing tool for viewing, creating and editing files\n* State is persistent across command calls and discussions with the user\n* If `path` is a file, `view` displays the result of applying `cat -n`. If `path` is a directory, `view` lists non-hidden files and directories up to 2 levels deep\n* The `create` command cannot be used if the specified `path` already exists as a file\n* If a `command` generates a long output, it will be truncated and marked with `<response clipped>`\n* The `undo_edit` command will revert the last edit made to the file at `path`\n\nNotes for using the `str_replace` command:\n* The `old_str` parameter should match EXACTLY one or more consecutive lines from the original file. Be mindful of whitespaces!\n* If the `old_str` parameter is not unique in the file, the replacement will not be performed. Make sure to include enough context in `old_str` to make it unique\n* The `new_str` parameter should contain the edited lines that should replace the `old_str`\n",
"parameters": {
"type": "object",
"properties": {
"command": {
"description": "The commands to run. Allowed options are: `view`, `create`, `str_replace`, `insert`, `undo_edit`.",
"enum": [
"view",
"create",
"str_replace",
"insert",
"undo_edit",
],
"type": "string",
},
"path": {
"description": "Absolute path to file or directory, e.g. `/repo/file.py` or `/repo`.",
"type": "string",
},
"file_text": {
"description": "Required parameter of `create` command, with the content of the file to be created.",
"type": "string",
},
"old_str": {
"description": "Required parameter of `str_replace` command containing the string in `path` to replace.",
"type": "string",
},
"new_str": {
"description": "Optional parameter of `str_replace` command containing the new string (if not given, no string will be added). Required parameter of `insert` command containing the string to insert.",
"type": "string",
},
"insert_line": {
"description": "Required parameter of `insert` command. The `new_str` will be inserted AFTER the line `insert_line` of `path`.",
"type": "integer",
},
"view_range": {
"description": "Optional parameter of `view` command when `path` points to a file. If none is given, the full file is shown. If provided, the file will be shown in the indicated line number range, e.g. [11, 12] will show lines 11 and 12. Indexing at 1 to start. Setting `[start_line, -1]` shows all lines from `start_line` to the end of the file.",
"items": {"type": "integer"},
"type": "array",
},
},
"required": ["command", "path"],
},
},
},
]
for _ in range(2):
resp = completion(model=model, messages=messages, tools=tools)
print(resp)
if model == "claude-3-5-sonnet-20241022":
assert resp.usage.prompt_tokens_details.cached_tokens > 0