forked from phoenix/litellm-mirror
* fix: fix type-checking errors * fix: fix additional type-checking errors * fix: additional type-checking error fixes * fix: fix additional type-checking errors * fix: additional type-check fixes * fix: fix all type-checking errors + add pyright to ci/cd * fix: fix incorrect import * ci(config.yml): use mypy on ci/cd * fix: fix type-checking errors in utils.py * fix: fix all type-checking errors on main.py * fix: fix mypy linting errors * fix(anthropic/cost_calculator.py): fix linting errors * fix: fix mypy linting errors * fix: fix linting errors
199 lines
7 KiB
Python
199 lines
7 KiB
Python
from typing import Any, Coroutine, Optional, Union
|
|
|
|
import httpx
|
|
from openai import AsyncOpenAI, OpenAI
|
|
from openai.pagination import AsyncCursorPage
|
|
from openai.types.fine_tuning import FineTuningJob
|
|
|
|
from litellm._logging import verbose_logger
|
|
from litellm.llms.base import BaseLLM
|
|
from litellm.types.llms.openai import FineTuningJobCreate
|
|
|
|
|
|
class OpenAIFineTuningAPI(BaseLLM):
|
|
"""
|
|
OpenAI methods to support for batches
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def get_openai_client(
|
|
self,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str],
|
|
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
|
_is_async: bool = False,
|
|
) -> Optional[Union[OpenAI, AsyncOpenAI]]:
|
|
received_args = locals()
|
|
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = None
|
|
if client is None:
|
|
data = {}
|
|
for k, v in received_args.items():
|
|
if k == "self" or k == "client" or k == "_is_async":
|
|
pass
|
|
elif k == "api_base" and v is not None:
|
|
data["base_url"] = v
|
|
elif v is not None:
|
|
data[k] = v
|
|
if _is_async is True:
|
|
openai_client = AsyncOpenAI(**data)
|
|
else:
|
|
openai_client = OpenAI(**data) # type: ignore
|
|
else:
|
|
openai_client = client
|
|
|
|
return openai_client
|
|
|
|
async def acreate_fine_tuning_job(
|
|
self,
|
|
create_fine_tuning_job_data: dict,
|
|
openai_client: AsyncOpenAI,
|
|
) -> FineTuningJob:
|
|
response = await openai_client.fine_tuning.jobs.create(
|
|
**create_fine_tuning_job_data
|
|
)
|
|
return response
|
|
|
|
def create_fine_tuning_job(
|
|
self,
|
|
_is_async: bool,
|
|
create_fine_tuning_job_data: dict,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str],
|
|
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
|
) -> Union[FineTuningJob, Coroutine[Any, Any, FineTuningJob]]:
|
|
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.acreate_fine_tuning_job( # type: ignore
|
|
create_fine_tuning_job_data=create_fine_tuning_job_data,
|
|
openai_client=openai_client,
|
|
)
|
|
verbose_logger.debug(
|
|
"creating fine tuning job, args= %s", create_fine_tuning_job_data
|
|
)
|
|
response = openai_client.fine_tuning.jobs.create(**create_fine_tuning_job_data)
|
|
return response
|
|
|
|
async def acancel_fine_tuning_job(
|
|
self,
|
|
fine_tuning_job_id: str,
|
|
openai_client: AsyncOpenAI,
|
|
) -> FineTuningJob:
|
|
response = await openai_client.fine_tuning.jobs.cancel(
|
|
fine_tuning_job_id=fine_tuning_job_id
|
|
)
|
|
return response
|
|
|
|
def cancel_fine_tuning_job(
|
|
self,
|
|
_is_async: bool,
|
|
fine_tuning_job_id: str,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str],
|
|
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
|
):
|
|
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.acancel_fine_tuning_job( # type: ignore
|
|
fine_tuning_job_id=fine_tuning_job_id,
|
|
openai_client=openai_client,
|
|
)
|
|
verbose_logger.debug("canceling fine tuning job, args= %s", fine_tuning_job_id)
|
|
response = openai_client.fine_tuning.jobs.cancel(
|
|
fine_tuning_job_id=fine_tuning_job_id
|
|
)
|
|
return response
|
|
|
|
async def alist_fine_tuning_jobs(
|
|
self,
|
|
openai_client: AsyncOpenAI,
|
|
after: Optional[str] = None,
|
|
limit: Optional[int] = None,
|
|
):
|
|
response = await openai_client.fine_tuning.jobs.list(after=after, limit=limit) # type: ignore
|
|
return response
|
|
|
|
def list_fine_tuning_jobs(
|
|
self,
|
|
_is_async: bool,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
organization: Optional[str],
|
|
client: Optional[Union[OpenAI, AsyncOpenAI]] = None,
|
|
after: Optional[str] = None,
|
|
limit: Optional[int] = None,
|
|
):
|
|
openai_client: Optional[Union[OpenAI, AsyncOpenAI]] = self.get_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
if openai_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(openai_client, AsyncOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.alist_fine_tuning_jobs( # type: ignore
|
|
after=after,
|
|
limit=limit,
|
|
openai_client=openai_client,
|
|
)
|
|
verbose_logger.debug("list fine tuning job, after= %s, limit= %s", after, limit)
|
|
response = openai_client.fine_tuning.jobs.list(after=after, limit=limit) # type: ignore
|
|
return response
|
|
pass
|