litellm/tests/local_testing/test_caching.py

2158 lines
66 KiB
Python

import os
import sys
import time
import traceback
import uuid
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import asyncio
import hashlib
import random
import pytest
import litellm
from litellm import aembedding, completion, embedding
from litellm.caching import Cache
# litellm.set_verbose=True
messages = [{"role": "user", "content": "who is ishaan Github? "}]
# comment
import random
import string
def generate_random_word(length=4):
letters = string.ascii_lowercase
return "".join(random.choice(letters) for _ in range(length))
messages = [{"role": "user", "content": "who is ishaan 5222"}]
@pytest.mark.asyncio
async def test_dual_cache_async_batch_get_cache():
"""
Unit testing for Dual Cache async_batch_get_cache()
- 2 item query
- in_memory result has a partial hit (1/2)
- hit redis for the other -> expect to return None
- expect result = [in_memory_result, None]
"""
from litellm.caching import DualCache, InMemoryCache, RedisCache
in_memory_cache = InMemoryCache()
redis_cache = RedisCache() # get credentials from environment
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
in_memory_cache.set_cache(key="test_value", value="hello world")
result = await dual_cache.async_batch_get_cache(keys=["test_value", "test_value_2"])
assert result[0] == "hello world"
assert result[1] == None
def test_dual_cache_batch_get_cache():
"""
Unit testing for Dual Cache batch_get_cache()
- 2 item query
- in_memory result has a partial hit (1/2)
- hit redis for the other -> expect to return None
- expect result = [in_memory_result, None]
"""
from litellm.caching import DualCache, InMemoryCache, RedisCache
in_memory_cache = InMemoryCache()
redis_cache = RedisCache() # get credentials from environment
dual_cache = DualCache(in_memory_cache=in_memory_cache, redis_cache=redis_cache)
in_memory_cache.set_cache(key="test_value", value="hello world")
result = dual_cache.batch_get_cache(keys=["test_value", "test_value_2"])
assert result[0] == "hello world"
assert result[1] == None
# @pytest.mark.skip(reason="")
def test_caching_dynamic_args(): # test in memory cache
try:
litellm.set_verbose = True
_redis_host_env = os.environ.pop("REDIS_HOST")
_redis_port_env = os.environ.pop("REDIS_PORT")
_redis_password_env = os.environ.pop("REDIS_PASSWORD")
litellm.cache = Cache(
type="redis",
host=_redis_host_env,
port=_redis_port_env,
password=_redis_password_env,
)
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
if (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
os.environ["REDIS_HOST"] = _redis_host_env
os.environ["REDIS_PORT"] = _redis_port_env
os.environ["REDIS_PASSWORD"] = _redis_password_env
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
def test_caching_v2(): # test in memory cache
try:
litellm.set_verbose = True
litellm.cache = Cache()
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
if (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_v2()
def test_caching_with_ttl():
try:
litellm.set_verbose = True
litellm.cache = Cache()
response1 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, ttl=0
)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
assert (
response2["choices"][0]["message"]["content"]
!= response1["choices"][0]["message"]["content"]
)
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
def test_caching_with_default_ttl():
try:
litellm.set_verbose = True
litellm.cache = Cache(ttl=0)
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
litellm.cache = None # disable cache
litellm.success_callback = []
litellm._async_success_callback = []
assert response2["id"] != response1["id"]
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
@pytest.mark.parametrize(
"sync_flag",
[True, False],
)
@pytest.mark.asyncio
async def test_caching_with_cache_controls(sync_flag):
try:
litellm.set_verbose = True
litellm.cache = Cache()
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
if sync_flag:
## TTL = 0
response1 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"ttl": 0}
)
response2 = completion(
model="gpt-3.5-turbo", messages=messages, cache={"s-maxage": 10}
)
assert response2["id"] != response1["id"]
else:
## TTL = 0
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
cache={"ttl": 0},
mock_response="Hello world",
)
await asyncio.sleep(10)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
cache={"s-maxage": 10},
mock_response="Hello world",
)
assert response2["id"] != response1["id"]
message = [{"role": "user", "content": f"Hey, how's it going? {uuid.uuid4()}"}]
## TTL = 5
if sync_flag:
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
cache={"ttl": 5},
mock_response="Hello world",
)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
cache={"s-maxage": 5},
mock_response="Hello world",
)
print(f"response1: {response1}")
print(f"response2: {response2}")
assert response2["id"] == response1["id"]
else:
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
cache={"ttl": 25},
mock_response="Hello world",
)
await asyncio.sleep(10)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
cache={"s-maxage": 25},
mock_response="Hello world",
)
print(f"response1: {response1}")
print(f"response2: {response2}")
assert response2["id"] == response1["id"]
except Exception as e:
print(f"error occurred: {traceback.format_exc()}")
pytest.fail(f"Error occurred: {e}")
# test_caching_with_cache_controls()
def test_caching_with_models_v2():
messages = [
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
]
litellm.cache = Cache()
print("test2 for caching")
litellm.set_verbose = True
response1 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response2 = completion(model="gpt-3.5-turbo", messages=messages, caching=True)
response3 = completion(model="azure/chatgpt-v-2", messages=messages, caching=True)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
if (
response3["choices"][0]["message"]["content"]
== response2["choices"][0]["message"]["content"]
):
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
# test_caching_with_models_v2()
def c():
litellm.enable_caching_on_provider_specific_optional_params = True
messages = [
{"role": "user", "content": "who is ishaan CTO of litellm from litellm 2023"}
]
litellm.cache = Cache()
print("test2 for caching")
litellm.set_verbose = True
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
top_k=10,
caching=True,
mock_response="Hello: {}".format(uuid.uuid4()),
)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
top_k=10,
caching=True,
mock_response="Hello: {}".format(uuid.uuid4()),
)
response3 = completion(
model="gpt-3.5-turbo",
messages=messages,
top_k=9,
caching=True,
mock_response="Hello: {}".format(uuid.uuid4()),
)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
if (
response3["choices"][0]["message"]["content"]
== response2["choices"][0]["message"]["content"]
):
# if models are different, it should not return cached response
print(f"response2: {response2}")
print(f"response3: {response3}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
):
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
litellm.enable_caching_on_provider_specific_optional_params = False
embedding_large_text = (
"""
small text
"""
* 5
)
# # test_caching_with_models()
def test_embedding_caching():
import time
# litellm.set_verbose = True
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
start_time = time.time()
embedding1 = embedding(
model="text-embedding-ada-002", input=text_to_embed, caching=True
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="text-embedding-ada-002", input=text_to_embed, caching=True
)
end_time = time.time()
# print(f"embedding2: {embedding2}")
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
# test_embedding_caching()
def test_embedding_caching_azure():
print("Testing azure embedding caching")
import time
litellm.cache = Cache()
text_to_embed = [embedding_large_text]
api_key = os.environ["AZURE_API_KEY"]
api_base = os.environ["AZURE_API_BASE"]
api_version = os.environ["AZURE_API_VERSION"]
os.environ["AZURE_API_VERSION"] = ""
os.environ["AZURE_API_BASE"] = ""
os.environ["AZURE_API_KEY"] = ""
start_time = time.time()
print("AZURE CONFIGS")
print(api_version)
print(api_key)
print(api_base)
embedding1 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True,
)
end_time = time.time()
print(f"Embedding 1 response time: {end_time - start_time} seconds")
time.sleep(1)
start_time = time.time()
embedding2 = embedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "this is another item"],
api_key=api_key,
api_base=api_base,
api_version=api_version,
caching=True,
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
assert end_time - start_time <= 0.1 # ensure 2nd response comes in in under 0.1 s
if embedding2["data"][0]["embedding"] != embedding1["data"][0]["embedding"]:
print(f"embedding1: {embedding1}")
print(f"embedding2: {embedding2}")
pytest.fail("Error occurred: Embedding caching failed")
os.environ["AZURE_API_VERSION"] = api_version
os.environ["AZURE_API_BASE"] = api_base
os.environ["AZURE_API_KEY"] = api_key
# test_embedding_caching_azure()
@pytest.mark.asyncio
async def test_embedding_caching_azure_individual_items():
"""
Tests caching for individual items in an embedding list
- Cache an item
- call aembedding(..) with the item + 1 unique item
- compare to a 2nd aembedding (...) with 2 unique items
```
embedding_1 = ["hey how's it going", "I'm doing well"]
embedding_val_1 = embedding(...)
embedding_2 = ["hey how's it going", "I'm fine"]
embedding_val_2 = embedding(...)
assert embedding_val_1[0]["id"] == embedding_val_2[0]["id"]
```
"""
litellm.cache = Cache()
common_msg = f"hey how's it going {uuid.uuid4()}"
common_msg_2 = f"hey how's it going {uuid.uuid4()}"
embedding_1 = [common_msg]
embedding_2 = [
common_msg,
f"I'm fine {uuid.uuid4()}",
]
embedding_val_1 = await aembedding(
model="azure/azure-embedding-model", input=embedding_1, caching=True
)
embedding_val_2 = await aembedding(
model="azure/azure-embedding-model", input=embedding_2, caching=True
)
print(f"embedding_val_2._hidden_params: {embedding_val_2._hidden_params}")
assert embedding_val_2._hidden_params["cache_hit"] == True
@pytest.mark.asyncio
async def test_embedding_caching_azure_individual_items_reordered():
"""
Tests caching for individual items in an embedding list
- Cache an item
- call aembedding(..) with the item + 1 unique item
- compare to a 2nd aembedding (...) with 2 unique items
```
embedding_1 = ["hey how's it going", "I'm doing well"]
embedding_val_1 = embedding(...)
embedding_2 = ["hey how's it going", "I'm fine"]
embedding_val_2 = embedding(...)
assert embedding_val_1[0]["id"] == embedding_val_2[0]["id"]
```
"""
litellm.cache = Cache()
common_msg = f"{uuid.uuid4()}"
common_msg_2 = f"hey how's it going {uuid.uuid4()}"
embedding_1 = [common_msg_2, common_msg]
embedding_2 = [
common_msg,
f"I'm fine {uuid.uuid4()}",
]
embedding_val_1 = await aembedding(
model="azure/azure-embedding-model", input=embedding_1, caching=True
)
embedding_val_2 = await aembedding(
model="azure/azure-embedding-model", input=embedding_2, caching=True
)
print(f"embedding_val_2._hidden_params: {embedding_val_2._hidden_params}")
assert embedding_val_2._hidden_params["cache_hit"] == True
assert embedding_val_2.data[0]["embedding"] == embedding_val_1.data[1]["embedding"]
assert embedding_val_2.data[0]["index"] != embedding_val_1.data[1]["index"]
assert embedding_val_2.data[0]["index"] == 0
assert embedding_val_1.data[1]["index"] == 1
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_embedding_caching_base_64():
""" """
litellm.set_verbose = True
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
)
import uuid
inputs = [
f"{uuid.uuid4()} hello this is ishaan",
f"{uuid.uuid4()} hello this is ishaan again",
]
embedding_val_1 = await aembedding(
model="azure/azure-embedding-model",
input=inputs,
caching=True,
encoding_format="base64",
)
await asyncio.sleep(5)
print("\n\nCALL2\n\n")
embedding_val_2 = await aembedding(
model="azure/azure-embedding-model",
input=inputs,
caching=True,
encoding_format="base64",
)
assert embedding_val_2._hidden_params["cache_hit"] == True
print(embedding_val_2)
print(embedding_val_1)
assert embedding_val_2.data[0]["embedding"] == embedding_val_1.data[0]["embedding"]
assert embedding_val_2.data[1]["embedding"] == embedding_val_1.data[1]["embedding"]
@pytest.mark.asyncio
async def test_redis_cache_basic():
"""
Init redis client
- write to client
- read from client
"""
litellm.set_verbose = False
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
)
cache_key = litellm.cache.get_cache_key(
model="gpt-3.5-turbo",
messages=messages,
)
print(f"cache_key: {cache_key}")
litellm.cache.add_cache(result=response1, cache_key=cache_key)
print(f"cache key pre async get: {cache_key}")
stored_val = await litellm.cache.async_get_cache(
model="gpt-3.5-turbo",
messages=messages,
)
print(f"stored_val: {stored_val}")
assert stored_val["id"] == response1.id
@pytest.mark.asyncio
async def test_redis_batch_cache_write():
"""
Init redis client
- write to client
- read from client
"""
litellm.set_verbose = True
import uuid
messages = [
{"role": "user", "content": f"write a one sentence poem about: {uuid.uuid4()}"},
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
redis_flush_size=2,
)
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
)
response2 = await litellm.acompletion(
model="anthropic/claude-3-opus-20240229",
messages=messages,
mock_response="good morning from this test",
)
# we hit the flush size, this will now send to redis
await asyncio.sleep(2)
response4 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
)
assert response1.id == response4.id
def test_redis_cache_completion():
litellm.set_verbose = False
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test2 for Redis Caching - non streaming")
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
)
response2 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, max_tokens=20
)
response3 = completion(
model="gpt-3.5-turbo", messages=messages, caching=True, temperature=0.5
)
response4 = completion(model="azure/chatgpt-v-2", messages=messages, caching=True)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
print("\nresponse 4", response4)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
"""
1 & 2 should be exactly the same
1 & 3 should be different, since input params are diff
1 & 4 should be diff, since models are diff
"""
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
): # 1 and 2 should be the same
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
== response3["choices"][0]["message"]["content"]
):
# if input params like seed, max_tokens are diff it should NOT be a cache hit
print(f"response1: {response1}")
print(f"response3: {response3}")
pytest.fail(
f"Response 1 == response 3. Same model, diff params shoudl not cache Error occurred:"
)
if (
response1["choices"][0]["message"]["content"]
== response4["choices"][0]["message"]["content"]
):
# if models are different, it should not return cached response
print(f"response1: {response1}")
print(f"response4: {response4}")
pytest.fail(f"Error occurred:")
assert response1.id == response2.id
assert response1.created == response2.created
assert response1.choices[0].message.content == response2.choices[0].message.content
# test_redis_cache_completion()
def test_redis_cache_completion_stream():
try:
litellm.success_callback = []
litellm._async_success_callback = []
litellm.callbacks = []
litellm.set_verbose = True
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_1_id = ""
for chunk in response1:
print(chunk)
response_1_id = chunk.id
time.sleep(0.5)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=0.2,
stream=True,
)
response_2_id = ""
for chunk in response2:
print(chunk)
response_2_id = chunk.id
assert (
response_1_id == response_2_id
), f"Response 1 != Response 2. Same params, Response 1{response_1_id} != Response 2{response_2_id}"
litellm.success_callback = []
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
litellm.success_callback = []
raise e
"""
1 & 2 should be exactly the same
"""
# test_redis_cache_completion_stream()
@pytest.mark.skip(reason="Local test. Requires running redis cluster locally.")
@pytest.mark.asyncio
async def test_redis_cache_cluster_init_unit_test():
try:
from redis.asyncio import RedisCluster as AsyncRedisCluster
from redis.cluster import RedisCluster
from litellm.caching import RedisCache
litellm.set_verbose = True
# List of startup nodes
startup_nodes = [
{"host": "127.0.0.1", "port": "7001"},
]
resp = RedisCache(startup_nodes=startup_nodes)
assert isinstance(resp.redis_client, RedisCluster)
assert isinstance(resp.init_async_client(), AsyncRedisCluster)
resp = litellm.Cache(type="redis", redis_startup_nodes=startup_nodes)
assert isinstance(resp.cache, RedisCache)
assert isinstance(resp.cache.redis_client, RedisCluster)
assert isinstance(resp.cache.init_async_client(), AsyncRedisCluster)
except Exception as e:
print(f"{str(e)}\n\n{traceback.format_exc()}")
raise e
@pytest.mark.asyncio
@pytest.mark.skip(reason="Local test. Requires running redis cluster locally.")
async def test_redis_cache_cluster_init_with_env_vars_unit_test():
try:
import json
from redis.asyncio import RedisCluster as AsyncRedisCluster
from redis.cluster import RedisCluster
from litellm.caching import RedisCache
litellm.set_verbose = True
# List of startup nodes
startup_nodes = [
{"host": "127.0.0.1", "port": "7001"},
{"host": "127.0.0.1", "port": "7003"},
{"host": "127.0.0.1", "port": "7004"},
{"host": "127.0.0.1", "port": "7005"},
{"host": "127.0.0.1", "port": "7006"},
{"host": "127.0.0.1", "port": "7007"},
]
# set startup nodes in environment variables
os.environ["REDIS_CLUSTER_NODES"] = json.dumps(startup_nodes)
print("REDIS_CLUSTER_NODES", os.environ["REDIS_CLUSTER_NODES"])
# unser REDIS_HOST, REDIS_PORT, REDIS_PASSWORD
os.environ.pop("REDIS_HOST", None)
os.environ.pop("REDIS_PORT", None)
os.environ.pop("REDIS_PASSWORD", None)
resp = RedisCache()
print("response from redis cache", resp)
assert isinstance(resp.redis_client, RedisCluster)
assert isinstance(resp.init_async_client(), AsyncRedisCluster)
resp = litellm.Cache(type="redis")
assert isinstance(resp.cache, RedisCache)
assert isinstance(resp.cache.redis_client, RedisCluster)
assert isinstance(resp.cache.init_async_client(), AsyncRedisCluster)
except Exception as e:
print(f"{str(e)}\n\n{traceback.format_exc()}")
raise e
@pytest.mark.asyncio
async def test_redis_cache_acompletion_stream():
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
response_2_content += chunk.choices[0].delta.content or ""
print(response_2_content)
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(f"{str(e)}\n\n{traceback.format_exc()}")
raise e
# test_redis_cache_acompletion_stream()
@pytest.mark.asyncio
async def test_redis_cache_atext_completion():
try:
litellm.set_verbose = True
prompt = f"write a one sentence poem about: {uuid.uuid4()}"
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
supported_call_types=["atext_completion"],
)
print("test for caching, atext_completion")
response1 = await litellm.atext_completion(
model="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=40, temperature=1
)
await asyncio.sleep(0.5)
print("\n\n Response 1 content: ", response1, "\n\n")
response2 = await litellm.atext_completion(
model="gpt-3.5-turbo-instruct", prompt=prompt, max_tokens=40, temperature=1
)
print(response2)
assert response1.id == response2.id
except Exception as e:
print(f"{str(e)}\n\n{traceback.format_exc()}")
raise e
@pytest.mark.asyncio
async def test_redis_cache_acompletion_stream_bedrock():
import asyncio
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(type="redis")
print("test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
response1 = await litellm.acompletion(
model="bedrock/anthropic.claude-v2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
print(chunk)
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
time.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
response2 = await litellm.acompletion(
model="bedrock/anthropic.claude-v2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
print(response_2_content)
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
def test_disk_cache_completion():
litellm.set_verbose = False
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="disk",
)
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is so great!",
)
# response2 is mocked to a different response from response1,
# but the completion from the cache should be used instead of the mock
# response since the input is the same as response1
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
caching=True,
max_tokens=20,
mock_response="This number is awful!",
)
# Since the parameters are not the same as response1, response3 should actually
# be the mock response
response3 = completion(
model="gpt-3.5-turbo",
messages=messages,
caching=True,
temperature=0.5,
mock_response="This number is awful!",
)
print("\nresponse 1", response1)
print("\nresponse 2", response2)
print("\nresponse 3", response3)
# print("\nresponse 4", response4)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
# 1 & 2 should be exactly the same
# 1 & 3 should be different, since input params are diff
if (
response1["choices"][0]["message"]["content"]
!= response2["choices"][0]["message"]["content"]
): # 1 and 2 should be the same
# 1&2 have the exact same input params. This MUST Be a CACHE HIT
print(f"response1: {response1}")
print(f"response2: {response2}")
pytest.fail(f"Error occurred:")
if (
response1["choices"][0]["message"]["content"]
== response3["choices"][0]["message"]["content"]
):
# if input params like max_tokens, temperature are diff it should NOT be a cache hit
print(f"response1: {response1}")
print(f"response3: {response3}")
pytest.fail(
f"Response 1 == response 3. Same model, diff params shoudl not cache Error"
f" occurred:"
)
assert response1.id == response2.id
assert response1.created == response2.created
assert response1.choices[0].message.content == response2.choices[0].message.content
# @pytest.mark.skip(reason="AWS Suspended Account")
@pytest.mark.parametrize("sync_mode", [True, False])
@pytest.mark.asyncio
async def test_s3_cache_stream_azure(sync_mode):
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="s3",
s3_bucket_name="litellm-proxy",
s3_region_name="us-west-2",
)
print("s3 Cache: test for caching, streaming + completion")
response_1_content = ""
response_2_content = ""
response_1_created = ""
response_2_created = ""
if sync_mode:
response1 = litellm.completion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
for chunk in response1:
print(chunk)
response_1_created = chunk.created
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
else:
response1 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response1:
print(chunk)
response_1_created = chunk.created
response_1_content += chunk.choices[0].delta.content or ""
print(response_1_content)
if sync_mode:
time.sleep(0.5)
else:
await asyncio.sleep(0.5)
print("\n\n Response 1 content: ", response_1_content, "\n\n")
if sync_mode:
response2 = litellm.completion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
response_2_created = chunk.created
print(response_2_content)
else:
response2 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
print(chunk)
response_2_content += chunk.choices[0].delta.content or ""
response_2_created = chunk.created
print(response_2_content)
print("\nresponse 1", response_1_content)
print("\nresponse 2", response_2_content)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
# prioritizing getting a new deploy out - will look at this in the next deploy
# print("response 1 created", response_1_created)
# print("response 2 created", response_2_created)
# assert response_1_created == response_2_created
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
# test_s3_cache_acompletion_stream_azure()
@pytest.mark.skip(reason="AWS Suspended Account")
@pytest.mark.asyncio
async def test_s3_cache_acompletion_azure():
import asyncio
import logging
import tracemalloc
tracemalloc.start()
logging.basicConfig(level=logging.DEBUG)
try:
litellm.set_verbose = True
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a one sentence poem about: {random_word}",
}
]
litellm.cache = Cache(
type="s3",
s3_bucket_name="litellm-my-test-bucket-2",
s3_region_name="us-east-1",
)
print("s3 Cache: test for caching, streaming + completion")
response1 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
)
print(response1)
time.sleep(2)
response2 = await litellm.acompletion(
model="azure/chatgpt-v-2",
messages=messages,
max_tokens=40,
temperature=1,
)
print(response2)
assert response1.id == response2.id
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(e)
raise e
# test_redis_cache_acompletion_stream_bedrock()
# redis cache with custom keys
def custom_get_cache_key(*args, **kwargs):
# return key to use for your cache:
key = (
kwargs.get("model", "")
+ str(kwargs.get("messages", ""))
+ str(kwargs.get("temperature", ""))
+ str(kwargs.get("logit_bias", ""))
)
return key
def test_custom_redis_cache_with_key():
messages = [{"role": "user", "content": "write a one line story"}]
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
litellm.cache.get_cache_key = custom_get_cache_key
local_cache = {}
def set_cache(key, value):
local_cache[key] = value
def get_cache(key):
if key in local_cache:
return local_cache[key]
litellm.cache.cache.set_cache = set_cache
litellm.cache.cache.get_cache = get_cache
# patch this redis cache get and set call
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=True,
num_retries=3,
)
response2 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=True,
num_retries=3,
)
response3 = completion(
model="gpt-3.5-turbo",
messages=messages,
temperature=1,
caching=False,
num_retries=3,
)
print(f"response1: {response1}")
print(f"response2: {response2}")
print(f"response3: {response3}")
if (
response3["choices"][0]["message"]["content"]
== response2["choices"][0]["message"]["content"]
):
pytest.fail(f"Error occurred:")
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
# test_custom_redis_cache_with_key()
def test_cache_override():
# test if we can override the cache, when `caching=False` but litellm.cache = Cache() is set
# in this case it should not return cached responses
litellm.cache = Cache()
print("Testing cache override")
litellm.set_verbose = True
# test embedding
response1 = embedding(
model="text-embedding-ada-002", input=["hello who are you"], caching=False
)
start_time = time.time()
response2 = embedding(
model="text-embedding-ada-002", input=["hello who are you"], caching=False
)
end_time = time.time()
print(f"Embedding 2 response time: {end_time - start_time} seconds")
assert (
end_time - start_time > 0.05
) # ensure 2nd response comes in over 0.05s. This should not be cached.
# test_cache_override()
@pytest.mark.asyncio
async def test_cache_control_overrides():
# we use the cache controls to ensure there is no cache hit on this test
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("Testing cache override")
litellm.set_verbose = True
import uuid
unique_num = str(uuid.uuid4())
start_time = time.time()
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello who are you" + unique_num,
}
],
caching=True,
)
print(response1)
await asyncio.sleep(2)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello who are you" + unique_num,
}
],
caching=True,
cache={"no-cache": True},
)
print(response2)
assert response1.id != response2.id
def test_sync_cache_control_overrides():
# we use the cache controls to ensure there is no cache hit on this test
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
)
print("Testing cache override")
litellm.set_verbose = True
import uuid
unique_num = str(uuid.uuid4())
start_time = time.time()
response1 = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello who are you" + unique_num,
}
],
caching=True,
)
print(response1)
time.sleep(2)
response2 = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": "hello who are you" + unique_num,
}
],
caching=True,
cache={"no-cache": True},
)
print(response2)
assert response1.id != response2.id
def test_custom_redis_cache_params():
# test if we can init redis with **kwargs
try:
litellm.cache = Cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
db=0,
)
print(litellm.cache.cache.redis_client)
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
pytest.fail(f"Error occurred: {str(e)}")
def test_get_cache_key():
from litellm.caching import Cache
try:
print("Testing get_cache_key")
cache_instance = Cache()
cache_key = cache_instance.get_cache_key(
**{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "write a one sentence poem about: 7510"}
],
"max_tokens": 40,
"temperature": 0.2,
"stream": True,
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
"litellm_logging_obj": {},
}
)
cache_key_2 = cache_instance.get_cache_key(
**{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "write a one sentence poem about: 7510"}
],
"max_tokens": 40,
"temperature": 0.2,
"stream": True,
"litellm_call_id": "ffe75e7e-8a07-431f-9a74-71a5b9f35f0b",
"litellm_logging_obj": {},
}
)
cache_key_str = "model: gpt-3.5-turbomessages: [{'role': 'user', 'content': 'write a one sentence poem about: 7510'}]max_tokens: 40temperature: 0.2stream: True"
hash_object = hashlib.sha256(cache_key_str.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert cache_key == hash_hex
assert (
cache_key_2 == hash_hex
), f"{cache_key} != {cache_key_2}. The same kwargs should have the same cache key across runs"
embedding_cache_key = cache_instance.get_cache_key(
**{
"model": "azure/azure-embedding-model",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_key": "",
"api_version": "2023-07-01-preview",
"timeout": None,
"max_retries": 0,
"input": ["hi who is ishaan"],
"caching": True,
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
}
)
print(embedding_cache_key)
embedding_cache_key_str = (
"model: azure/azure-embedding-modelinput: ['hi who is ishaan']"
)
hash_object = hashlib.sha256(embedding_cache_key_str.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert (
embedding_cache_key == hash_hex
), f"{embedding_cache_key} != 'model: azure/azure-embedding-modelinput: ['hi who is ishaan']'. The same kwargs should have the same cache key across runs"
# Proxy - embedding cache, test if embedding key, gets model_group and not model
embedding_cache_key_2 = cache_instance.get_cache_key(
**{
"model": "azure/azure-embedding-model",
"api_base": "https://openai-gpt-4-test-v-1.openai.azure.com/",
"api_key": "",
"api_version": "2023-07-01-preview",
"timeout": None,
"max_retries": 0,
"input": ["hi who is ishaan"],
"caching": True,
"client": "<openai.lib.azure.AsyncAzureOpenAI object at 0x12b6a1060>",
"proxy_server_request": {
"url": "http://0.0.0.0:8000/embeddings",
"method": "POST",
"headers": {
"host": "0.0.0.0:8000",
"user-agent": "curl/7.88.1",
"accept": "*/*",
"content-type": "application/json",
"content-length": "80",
},
"body": {
"model": "azure-embedding-model",
"input": ["hi who is ishaan"],
},
},
"user": None,
"metadata": {
"user_api_key": None,
"headers": {
"host": "0.0.0.0:8000",
"user-agent": "curl/7.88.1",
"accept": "*/*",
"content-type": "application/json",
"content-length": "80",
},
"model_group": "EMBEDDING_MODEL_GROUP",
"deployment": "azure/azure-embedding-model-ModelID-azure/azure-embedding-modelhttps://openai-gpt-4-test-v-1.openai.azure.com/2023-07-01-preview",
},
"model_info": {
"mode": "embedding",
"base_model": "text-embedding-ada-002",
"id": "20b2b515-f151-4dd5-a74f-2231e2f54e29",
},
"litellm_call_id": "2642e009-b3cd-443d-b5dd-bb7d56123b0e",
"litellm_logging_obj": "<litellm.utils.Logging object at 0x12f1bddb0>",
}
)
print(embedding_cache_key_2)
embedding_cache_key_str_2 = (
"model: EMBEDDING_MODEL_GROUPinput: ['hi who is ishaan']"
)
hash_object = hashlib.sha256(embedding_cache_key_str_2.encode())
# Hexadecimal representation of the hash
hash_hex = hash_object.hexdigest()
assert embedding_cache_key_2 == hash_hex
print("passed!")
except Exception as e:
traceback.print_exc()
pytest.fail(f"Error occurred:", e)
# test_get_cache_key()
def test_cache_context_managers():
litellm.set_verbose = True
litellm.cache = Cache(type="redis")
# cache is on, disable it
litellm.disable_cache()
assert litellm.cache == None
assert "cache" not in litellm.success_callback
assert "cache" not in litellm._async_success_callback
# disable a cache that is off
litellm.disable_cache()
assert litellm.cache == None
assert "cache" not in litellm.success_callback
assert "cache" not in litellm._async_success_callback
litellm.enable_cache(
type="redis",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
)
assert litellm.cache != None
assert litellm.cache.type == "redis"
print("VARS of litellm.cache", vars(litellm.cache))
# test_cache_context_managers()
@pytest.mark.skip(reason="beta test - new redis semantic cache")
def test_redis_semantic_cache_completion():
litellm.set_verbose = True
import logging
logging.basicConfig(level=logging.DEBUG)
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding /reading from cache
print("testing semantic caching")
litellm.cache = Cache(
type="redis-semantic",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8,
redis_semantic_cache_embedding_model="text-embedding-ada-002",
)
response1 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response1: {response1}")
random_number = random.randint(1, 100000)
response2 = completion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"response2: {response1}")
assert response1.id == response2.id
# test_redis_cache_completion()
@pytest.mark.skip(reason="beta test - new redis semantic cache")
@pytest.mark.asyncio
async def test_redis_semantic_cache_acompletion():
litellm.set_verbose = True
import logging
logging.basicConfig(level=logging.DEBUG)
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
print("testing semantic caching")
litellm.cache = Cache(
type="redis-semantic",
host=os.environ["REDIS_HOST"],
port=os.environ["REDIS_PORT"],
password=os.environ["REDIS_PASSWORD"],
similarity_threshold=0.8,
redis_semantic_cache_use_async=True,
)
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=5,
)
print(f"response1: {response1}")
random_number = random.randint(1, 100000)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=5,
)
print(f"response2: {response2}")
assert response1.id == response2.id
def test_caching_redis_simple(caplog, capsys):
"""
Relevant issue - https://github.com/BerriAI/litellm/issues/4511
"""
litellm.set_verbose = True ## REQUIRED FOR TEST.
litellm.cache = Cache(
type="redis", url=os.getenv("REDIS_SSL_URL")
) # passing `supported_call_types = ["completion"]` has no effect
s = time.time()
uuid_str = str(uuid.uuid4())
x = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Hello, how are you? Wink {uuid_str}"}],
stream=True,
)
for m in x:
print(m)
print(time.time() - s)
s2 = time.time()
x = completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": f"Hello, how are you? Wink {uuid_str}"}],
stream=True,
)
for m in x:
print(m)
print(time.time() - s2)
redis_async_caching_error = False
redis_service_logging_error = False
captured = capsys.readouterr()
captured_logs = [rec.message for rec in caplog.records]
print(f"captured_logs: {captured_logs}")
for item in captured_logs:
if (
"Error connecting to Async Redis client" in item
or "Set ASYNC Redis Cache" in item
):
redis_async_caching_error = True
if "ServiceLogging.async_service_success_hook" in item:
redis_service_logging_error = True
assert redis_async_caching_error is False
assert redis_service_logging_error is False
assert "async success_callback: reaches cache for logging" not in captured.out
@pytest.mark.asyncio
async def test_qdrant_semantic_cache_acompletion():
litellm.set_verbose = True
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding /reading from cache
print("Testing Qdrant Semantic Caching with acompletion")
litellm.cache = Cache(
type="qdrant-semantic",
_host_type="cloud",
qdrant_api_base=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
qdrant_collection_name="test_collection",
similarity_threshold=0.8,
qdrant_quantization_config="binary",
)
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
mock_response="hello",
max_tokens=20,
)
print(f"Response1: {response1}")
random_number = random.randint(1, 100000)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"Response2: {response2}")
assert response1.id == response2.id
@pytest.mark.asyncio
async def test_qdrant_semantic_cache_acompletion_stream():
try:
random_word = generate_random_word()
messages = [
{
"role": "user",
"content": f"write a joke about: {random_word}",
}
]
litellm.cache = Cache(
type="qdrant-semantic",
qdrant_api_base=os.getenv("QDRANT_URL"),
qdrant_api_key=os.getenv("QDRANT_API_KEY"),
qdrant_collection_name="test_collection",
similarity_threshold=0.8,
qdrant_quantization_config="binary",
)
print("Test Qdrant Semantic Caching with streaming + acompletion")
response_1_content = ""
response_2_content = ""
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
mock_response="hi",
)
async for chunk in response1:
response_1_id = chunk.id
response_1_content += chunk.choices[0].delta.content or ""
time.sleep(2)
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=40,
temperature=1,
stream=True,
)
async for chunk in response2:
response_2_id = chunk.id
response_2_content += chunk.choices[0].delta.content or ""
print("\nResponse 1", response_1_content, "\nResponse 1 id", response_1_id)
print("\nResponse 2", response_2_content, "\nResponse 2 id", response_2_id)
assert (
response_1_content == response_2_content
), f"Response 1 != Response 2. Same params, Response 1{response_1_content} != Response 2{response_2_content}"
assert (
response_1_id == response_2_id
), f"Response 1 id != Response 2 id, Response 1 id: {response_1_id} != Response 2 id: {response_2_id}"
litellm.cache = None
litellm.success_callback = []
litellm._async_success_callback = []
except Exception as e:
print(f"{str(e)}\n\n{traceback.format_exc()}")
raise e
@pytest.mark.asyncio()
async def test_cache_default_off_acompletion():
litellm.set_verbose = True
import logging
from litellm._logging import verbose_logger
verbose_logger.setLevel(logging.DEBUG)
from litellm.caching import CacheMode
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding /reading from cache
litellm.cache = Cache(
type="local",
mode=CacheMode.default_off,
)
### No Cache hits when it's default off
response1 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
mock_response="hello",
max_tokens=20,
)
print(f"Response1: {response1}")
response2 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
max_tokens=20,
)
print(f"Response2: {response2}")
assert response1.id != response2.id
## Cache hits when it's default off and then opt in
response3 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
mock_response="hello",
cache={"use-cache": True},
metadata={"key": "value"},
max_tokens=20,
)
print(f"Response3: {response3}")
await asyncio.sleep(2)
response4 = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=[
{
"role": "user",
"content": f"write a one sentence poem about: {random_number}",
}
],
cache={"use-cache": True},
metadata={"key": "value"},
max_tokens=20,
)
print(f"Response4: {response4}")
assert response3.id == response4.id
@pytest.mark.asyncio()
@pytest.mark.skip(reason="dual caching should first prioritze local cache")
async def test_dual_cache_uses_redis():
"""
- Store diff values in redis and in memory cache
- call get cache
- Assert that value from redis is used
"""
litellm.set_verbose = True
from litellm.caching import DualCache, RedisCache
current_usage = uuid.uuid4()
_cache_obj = DualCache(redis_cache=RedisCache(), always_read_redis=True)
# set cache
await _cache_obj.async_set_cache(key=f"current_usage: {current_usage}", value=10)
# modify value of in memory cache
_cache_obj.in_memory_cache.cache_dict[f"current_usage: {current_usage}"] = 1
# get cache
value = await _cache_obj.async_get_cache(key=f"current_usage: {current_usage}")
print("value from dual cache", value)
assert value == 10
@pytest.mark.asyncio()
async def test_proxy_logging_setup():
"""
Assert always_read_redis is True when used by internal usage cache
"""
from litellm.caching import DualCache
from litellm.proxy.utils import ProxyLogging
pl_obj = ProxyLogging(user_api_key_cache=DualCache())
assert pl_obj.internal_usage_cache.dual_cache.always_read_redis is True
@pytest.mark.skip(reason="local test. Requires sentinel setup.")
@pytest.mark.asyncio
async def test_redis_sentinel_caching():
"""
Init redis client
- write to client
- read from client
"""
litellm.set_verbose = False
random_number = random.randint(
1, 100000
) # add a random number to ensure it's always adding / reading from cache
messages = [
{"role": "user", "content": f"write a one sentence poem about: {random_number}"}
]
litellm.cache = Cache(
type="redis",
# host=os.environ["REDIS_HOST"],
# port=os.environ["REDIS_PORT"],
# password=os.environ["REDIS_PASSWORD"],
service_name="mymaster",
sentinel_nodes=[("localhost", 26379)],
)
response1 = completion(
model="gpt-3.5-turbo",
messages=messages,
)
cache_key = litellm.cache.get_cache_key(
model="gpt-3.5-turbo",
messages=messages,
)
print(f"cache_key: {cache_key}")
litellm.cache.add_cache(result=response1, cache_key=cache_key)
print(f"cache key pre async get: {cache_key}")
stored_val = litellm.cache.get_cache(
model="gpt-3.5-turbo",
messages=messages,
)
print(f"stored_val: {stored_val}")
assert stored_val["id"] == response1.id
stored_val_2 = await litellm.cache.async_get_cache(
model="gpt-3.5-turbo",
messages=messages,
)
print(f"stored_val: {stored_val}")
assert stored_val_2["id"] == response1.id
@pytest.mark.asyncio
async def test_redis_proxy_batch_redis_get_cache():
"""
Tests batch_redis_get.py
- make 1st call -> expect miss
- make 2nd call -> expect hit
"""
from litellm.caching import Cache, DualCache
from litellm.proxy._types import UserAPIKeyAuth
from litellm.proxy.hooks.batch_redis_get import _PROXY_BatchRedisRequests
litellm.cache = Cache(
type="redis",
host=os.getenv("REDIS_HOST"),
port=os.getenv("REDIS_PORT"),
password=os.getenv("REDIS_PASSWORD"),
namespace="test_namespace",
)
batch_redis_get_obj = (
_PROXY_BatchRedisRequests()
) # overrides the .async_get_cache method
user_api_key_cache = DualCache()
import uuid
batch_redis_get_obj.in_memory_cache = user_api_key_cache.in_memory_cache
messages = [{"role": "user", "content": "hi {}".format(uuid.uuid4())}]
# 1st call -> expect miss
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
mock_response="hello",
)
assert response is not None
assert "cache_key" not in response._hidden_params
print(response._hidden_params)
await asyncio.sleep(1)
# 2nd call -> expect hit
response = await litellm.acompletion(
model="gpt-3.5-turbo",
messages=messages,
mock_response="hello",
)
print(response._hidden_params)
assert "cache_key" in response._hidden_params