litellm/litellm/integrations/argilla.py
Krish Dholakia 905ebeb924
feat(custom_logger.py): expose new async_dataset_hook for modifying… (#6331)
* feat(custom_logger.py): expose new `async_dataset_hook` for modifying/rejecting argilla items before logging

Allows user more control on what gets logged to argilla for annotations

* feat(google_ai_studio_endpoints.py): add new `/azure/*` pass through route

enables pass-through for azure provider

* feat(utils.py): support checking ollama `/api/show` endpoint for retrieving ollama model info

Fixes https://github.com/BerriAI/litellm/issues/6322

* fix(user_api_key_auth.py): add `/key/delete` to an allowed_ui_routes

Fixes https://github.com/BerriAI/litellm/issues/6236

* fix(user_api_key_auth.py): remove type ignore

* fix(user_api_key_auth.py): route ui vs. api token checks differently

Fixes https://github.com/BerriAI/litellm/issues/6238

* feat(internal_user_endpoints.py): support setting models as a default internal user param

Closes https://github.com/BerriAI/litellm/issues/6239

* fix(user_api_key_auth.py): fix exception string

* fix(user_api_key_auth.py): fix error string

* fix: fix test
2024-10-20 09:00:04 -07:00

401 lines
14 KiB
Python

"""
Send logs to Argilla for annotation
"""
import asyncio
import json
import os
import random
import time
import traceback
import types
import uuid
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, TypedDict, Union
import dotenv # type: ignore
import httpx
import requests # type: ignore
from pydantic import BaseModel # type: ignore
import litellm
from litellm._logging import verbose_logger
from litellm.integrations.custom_batch_logger import CustomBatchLogger
from litellm.integrations.custom_logger import CustomLogger
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
get_async_httpx_client,
httpxSpecialProvider,
)
from litellm.llms.prompt_templates.common_utils import get_content_from_model_response
from litellm.types.integrations.argilla import (
SUPPORTED_PAYLOAD_FIELDS,
ArgillaCredentialsObject,
ArgillaItem,
ArgillaPayload,
)
from litellm.types.utils import StandardLoggingPayload
def is_serializable(value):
non_serializable_types = (
types.CoroutineType,
types.FunctionType,
types.GeneratorType,
BaseModel,
)
return not isinstance(value, non_serializable_types)
class ArgillaLogger(CustomBatchLogger):
def __init__(
self,
argilla_api_key: Optional[str] = None,
argilla_dataset_name: Optional[str] = None,
argilla_base_url: Optional[str] = None,
**kwargs,
):
if litellm.argilla_transformation_object is None:
raise Exception(
"'litellm.argilla_transformation_object' is required, to log your payload to Argilla."
)
self.validate_argilla_transformation_object(
litellm.argilla_transformation_object
)
self.argilla_transformation_object = litellm.argilla_transformation_object
self.default_credentials = self.get_credentials_from_env(
argilla_api_key=argilla_api_key,
argilla_dataset_name=argilla_dataset_name,
argilla_base_url=argilla_base_url,
)
self.sampling_rate: float = (
float(os.getenv("ARGILLA_SAMPLING_RATE")) # type: ignore
if os.getenv("ARGILLA_SAMPLING_RATE") is not None
and os.getenv("ARGILLA_SAMPLING_RATE").strip().isdigit() # type: ignore
else 1.0
)
self.async_httpx_client = get_async_httpx_client(
llm_provider=httpxSpecialProvider.LoggingCallback
)
_batch_size = (
os.getenv("ARGILLA_BATCH_SIZE", None) or litellm.argilla_batch_size
)
if _batch_size:
self.batch_size = int(_batch_size)
asyncio.create_task(self.periodic_flush())
self.flush_lock = asyncio.Lock()
super().__init__(**kwargs, flush_lock=self.flush_lock)
def validate_argilla_transformation_object(
self, argilla_transformation_object: Dict[str, Any]
):
if not isinstance(argilla_transformation_object, dict):
raise Exception(
"'argilla_transformation_object' must be a dictionary, to log your payload to Argilla."
)
for v in argilla_transformation_object.values():
if v not in SUPPORTED_PAYLOAD_FIELDS:
raise Exception(
f"All values in argilla_transformation_object must be a key in SUPPORTED_PAYLOAD_FIELDS, {v} is not a valid key."
)
def get_credentials_from_env(
self,
argilla_api_key: Optional[str],
argilla_dataset_name: Optional[str],
argilla_base_url: Optional[str],
) -> ArgillaCredentialsObject:
_credentials_api_key = argilla_api_key or os.getenv("ARGILLA_API_KEY")
if _credentials_api_key is None:
raise Exception("Invalid Argilla API Key given. _credentials_api_key=None.")
_credentials_base_url = (
argilla_base_url
or os.getenv("ARGILLA_BASE_URL")
or "http://localhost:6900/"
)
if _credentials_base_url is None:
raise Exception(
"Invalid Argilla Base URL given. _credentials_base_url=None."
)
_credentials_dataset_name = (
argilla_dataset_name
or os.getenv("ARGILLA_DATASET_NAME")
or "litellm-completion"
)
if _credentials_dataset_name is None:
raise Exception("Invalid Argilla Dataset give. Value=None.")
else:
dataset_response = litellm.module_level_client.get(
url=f"{_credentials_base_url}/api/v1/me/datasets?name={_credentials_dataset_name}",
headers={"X-Argilla-Api-Key": _credentials_api_key},
)
json_response = dataset_response.json()
if (
"items" in json_response
and isinstance(json_response["items"], list)
and len(json_response["items"]) > 0
):
_credentials_dataset_name = json_response["items"][0]["id"]
return ArgillaCredentialsObject(
ARGILLA_API_KEY=_credentials_api_key,
ARGILLA_BASE_URL=_credentials_base_url,
ARGILLA_DATASET_NAME=_credentials_dataset_name,
)
def get_chat_messages(
self, payload: StandardLoggingPayload
) -> List[Dict[str, Any]]:
payload_messages = payload.get("messages", None)
if payload_messages is None:
raise Exception("No chat messages found in payload.")
if (
isinstance(payload_messages, list)
and len(payload_messages) > 0
and isinstance(payload_messages[0], dict)
):
return payload_messages
elif isinstance(payload_messages, dict):
return [payload_messages]
else:
raise Exception(f"Invalid chat messages format: {payload_messages}")
def get_str_response(self, payload: StandardLoggingPayload) -> str:
response = payload["response"]
if response is None:
raise Exception("No response found in payload.")
if isinstance(response, str):
return response
elif isinstance(response, dict):
return (
response.get("choices", [{}])[0].get("message", {}).get("content", "")
)
else:
raise Exception(f"Invalid response format: {response}")
def _prepare_log_data(
self, kwargs, response_obj, start_time, end_time
) -> Optional[ArgillaItem]:
try:
# Ensure everything in the payload is converted to str
payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
if payload is None:
raise Exception("Error logging request payload. Payload=none.")
argilla_message = self.get_chat_messages(payload)
argilla_response = self.get_str_response(payload)
argilla_item: ArgillaItem = {"fields": {}}
for k, v in self.argilla_transformation_object.items():
if v == "messages":
argilla_item["fields"][k] = argilla_message
elif v == "response":
argilla_item["fields"][k] = argilla_response
else:
argilla_item["fields"][k] = payload.get(v, None)
return argilla_item
except Exception:
raise
def _send_batch(self):
if not self.log_queue:
return
argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]
url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"
argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]
headers = {"X-Argilla-Api-Key": argilla_api_key}
try:
response = requests.post(
url=url,
json=self.log_queue,
headers=headers,
)
if response.status_code >= 300:
verbose_logger.error(
f"Argilla Error: {response.status_code} - {response.text}"
)
else:
verbose_logger.debug(
f"Batch of {len(self.log_queue)} runs successfully created"
)
self.log_queue.clear()
except Exception:
verbose_logger.exception("Argilla Layer Error - Error sending batch.")
def log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
sampling_rate = (
float(os.getenv("LANGSMITH_SAMPLING_RATE")) # type: ignore
if os.getenv("LANGSMITH_SAMPLING_RATE") is not None
and os.getenv("LANGSMITH_SAMPLING_RATE").strip().isdigit() # type: ignore
else 1.0
)
random_sample = random.random()
if random_sample > sampling_rate:
verbose_logger.info(
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
sampling_rate, random_sample
)
)
return # Skip logging
verbose_logger.debug(
"Langsmith Sync Layer Logging - kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
if data is None:
return
self.log_queue.append(data)
verbose_logger.debug(
f"Langsmith, event added to queue. Will flush in {self.flush_interval} seconds..."
)
if len(self.log_queue) >= self.batch_size:
self._send_batch()
except Exception:
verbose_logger.exception("Langsmith Layer Error - log_success_event error")
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
try:
sampling_rate = self.sampling_rate
random_sample = random.random()
if random_sample > sampling_rate:
verbose_logger.info(
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
sampling_rate, random_sample
)
)
return # Skip logging
verbose_logger.debug(
"Langsmith Async Layer Logging - kwargs: %s, response_obj: %s",
kwargs,
response_obj,
)
payload: Optional[StandardLoggingPayload] = kwargs.get(
"standard_logging_object", None
)
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
## ALLOW CUSTOM LOGGERS TO MODIFY / FILTER DATA BEFORE LOGGING
for callback in litellm.callbacks:
if isinstance(callback, CustomLogger):
try:
if data is None:
break
data = await callback.async_dataset_hook(data, payload)
except NotImplementedError:
pass
if data is None:
return
self.log_queue.append(data)
verbose_logger.debug(
"Langsmith logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
except Exception:
verbose_logger.exception(
"Argilla Layer Error - error logging async success event."
)
async def async_log_failure_event(self, kwargs, response_obj, start_time, end_time):
sampling_rate = self.sampling_rate
random_sample = random.random()
if random_sample > sampling_rate:
verbose_logger.info(
"Skipping Langsmith logging. Sampling rate={}, random_sample={}".format(
sampling_rate, random_sample
)
)
return # Skip logging
verbose_logger.info("Langsmith Failure Event Logging!")
try:
data = self._prepare_log_data(kwargs, response_obj, start_time, end_time)
self.log_queue.append(data)
verbose_logger.debug(
"Langsmith logging: queue length %s, batch size %s",
len(self.log_queue),
self.batch_size,
)
if len(self.log_queue) >= self.batch_size:
await self.flush_queue()
except Exception:
verbose_logger.exception(
"Langsmith Layer Error - error logging async failure event."
)
async def async_send_batch(self):
"""
sends runs to /batch endpoint
Sends runs from self.log_queue
Returns: None
Raises: Does not raise an exception, will only verbose_logger.exception()
"""
if not self.log_queue:
return
argilla_api_base = self.default_credentials["ARGILLA_BASE_URL"]
argilla_dataset_name = self.default_credentials["ARGILLA_DATASET_NAME"]
url = f"{argilla_api_base}/api/v1/datasets/{argilla_dataset_name}/records/bulk"
argilla_api_key = self.default_credentials["ARGILLA_API_KEY"]
headers = {"X-Argilla-Api-Key": argilla_api_key}
try:
response = await self.async_httpx_client.put(
url=url,
data=json.dumps(
{
"items": self.log_queue,
}
),
headers=headers,
timeout=60000,
)
response.raise_for_status()
if response.status_code >= 300:
verbose_logger.error(
f"Argilla Error: {response.status_code} - {response.text}"
)
else:
verbose_logger.debug(
"Batch of %s runs successfully created", len(self.log_queue)
)
except httpx.HTTPStatusError:
verbose_logger.exception("Argilla HTTP Error")
except Exception:
verbose_logger.exception("Argilla Layer Error")