mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-31 16:01:46 +00:00
Convert TGI
This commit is contained in:
parent
9bb07ce298
commit
028530546f
14 changed files with 485 additions and 160 deletions
|
@ -1,13 +1,3 @@
|
|||
# NOTES:
|
||||
#
|
||||
# This Docker Compose (and the associated run.yaml) assumes you will be
|
||||
# running in the default "bridged" network mode.
|
||||
#
|
||||
# If you need "host" network mode, please uncomment
|
||||
# - network_mode: "host"
|
||||
#
|
||||
# Similarly change "host.docker.internal" to "localhost" in the run.yaml file
|
||||
#
|
||||
services:
|
||||
vllm-inference:
|
||||
image: vllm/vllm-openai:latest
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 14:07:24.568750
|
||||
built_at: 2024-11-17 14:48:55.487270
|
||||
image_name: remote-vllm
|
||||
docker_image: llamastack/distribution-remote-vllm:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- safety
|
||||
- agents
|
||||
- telemetry
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 14:07:24.563541
|
||||
built_at: 2024-11-17 14:48:55.476058
|
||||
image_name: remote-vllm
|
||||
docker_image: llamastack/distribution-remote-vllm:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- safety
|
||||
- agents
|
||||
- telemetry
|
||||
- safety
|
||||
- inference
|
||||
- memory
|
||||
- inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: vllm-inference
|
||||
|
|
|
@ -1,51 +1,89 @@
|
|||
services:
|
||||
text-generation-inference:
|
||||
tgi-inference:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "5009:5009"
|
||||
- "${TGI_INFERENCE_PORT:-8080}:${TGI_INFERENCE_PORT:-8080}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
- CUDA_VISIBLE_DEVICES=${TGI_INFERENCE_GPU:-0}
|
||||
- HF_TOKEN=$HF_TOKEN
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.1-8B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
command: >
|
||||
--dtype bfloat16
|
||||
--usage-stats off
|
||||
--sharded false
|
||||
--model-id ${TGI_INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
--port ${TGI_INFERENCE_PORT:-8080}
|
||||
--cuda-memory-fraction 0.75
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://tgi-inference:${TGI_INFERENCE_PORT:-8080}/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
# that's the closest analogue to --gpus; provide
|
||||
# an integer amount of devices or 'all'
|
||||
count: 1
|
||||
# Devices are reserved using a list of capabilities, making
|
||||
# capabilities the only required field. A device MUST
|
||||
# satisfy all the requested capabilities for a successful
|
||||
# reservation.
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
|
||||
tgi-${TGI_SAFETY_MODEL:+safety}:
|
||||
image: ghcr.io/huggingface/text-generation-inference:latest
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
ports:
|
||||
- "${TGI_SAFETY_PORT:-8081}:${TGI_SAFETY_PORT:-8081}"
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${TGI_SAFETY_GPU:-1}
|
||||
- HF_TOKEN=$HF_TOKEN
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: >
|
||||
--dtype bfloat16
|
||||
--usage-stats off
|
||||
--sharded false
|
||||
--model-id ${TGI_SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
--port ${TGI_SAFETY_PORT:-8081}
|
||||
--cuda-memory-fraction 0.75
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://text-generation-inference:5009/health"]
|
||||
test: ["CMD", "curl", "-f", "http://tgi-safety:${TGI_SAFETY_PORT:-8081}/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
|
||||
llamastack:
|
||||
depends_on:
|
||||
text-generation-inference:
|
||||
tgi-inference:
|
||||
condition: service_healthy
|
||||
image: llamastack/distribution-tgi
|
||||
network_mode: "host"
|
||||
tgi-${TGI_SAFETY_MODEL:+safety}:
|
||||
condition: service_healthy
|
||||
image: llamastack/distribution-tgi:test-0.0.52rc3
|
||||
network_mode: ${NETWORK_MODE:-bridged}
|
||||
volumes:
|
||||
- ~/.llama:/root/.llama
|
||||
# Link to TGI run.yaml file
|
||||
- ./run.yaml:/root/my-run.yaml
|
||||
- ./run${TGI_SAFETY_MODEL:+-with-safety}.yaml:/root/my-run.yaml
|
||||
ports:
|
||||
- "5000:5000"
|
||||
- "${LLAMA_STACK_PORT:-5001}:${LLAMA_STACK_PORT:-5001}"
|
||||
# Hack: wait for TGI server to start before starting docker
|
||||
entrypoint: bash -c "sleep 60; python -m llama_stack.distribution.server.server --yaml_config /root/my-run.yaml"
|
||||
restart_policy:
|
||||
|
@ -53,3 +91,13 @@ services:
|
|||
delay: 3s
|
||||
max_attempts: 5
|
||||
window: 60s
|
||||
environment:
|
||||
- TGI_URL=http://tgi-inference:${TGI_INFERENCE_PORT:-8080}
|
||||
- SAFETY_TGI_URL=http://tgi-safety:${TGI_SAFETY_PORT:-8081}
|
||||
- INFERENCE_MODEL=${INFERENCE_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
- SAFETY_MODEL=${SAFETY_MODEL:-meta-llama/Llama-Guard-3-1B}
|
||||
|
||||
volumes:
|
||||
tgi-inference:
|
||||
tgi-safety:
|
||||
llamastack:
|
||||
|
|
67
distributions/tgi/run-with-safety.yaml
Normal file
67
distributions/tgi/run-with-safety.yaml
Normal file
|
@ -0,0 +1,67 @@
|
|||
version: '2'
|
||||
built_at: 2024-11-17 14:48:56.991119
|
||||
image_name: tgi
|
||||
docker_image: llamastack/distribution-remote-tgi:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- safety
|
||||
- agents
|
||||
- telemetry
|
||||
- memory
|
||||
- inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi-inference
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.TGI_URL}
|
||||
- provider_id: tgi-safety
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: ${env.SAFETY_TGI_URL}
|
||||
memory:
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi-inference
|
||||
provider_model_id: null
|
||||
- metadata: {}
|
||||
model_id: ${env.SAFETY_MODEL}
|
||||
provider_id: tgi-safety
|
||||
provider_model_id: null
|
||||
shields:
|
||||
- params: null
|
||||
shield_id: ${env.SAFETY_MODEL}
|
||||
provider_id: null
|
||||
provider_shield_id: null
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
|
@ -1,45 +1,55 @@
|
|||
version: '2'
|
||||
built_at: '2024-10-08T17:40:45.325529'
|
||||
image_name: local
|
||||
docker_image: null
|
||||
conda_env: local
|
||||
built_at: 2024-11-17 14:48:56.975663
|
||||
image_name: tgi
|
||||
docker_image: llamastack/distribution-remote-tgi:test-0.0.52rc3
|
||||
conda_env: null
|
||||
apis:
|
||||
- shields
|
||||
- agents
|
||||
- models
|
||||
- memory
|
||||
- memory_banks
|
||||
- inference
|
||||
- safety
|
||||
- agents
|
||||
- telemetry
|
||||
- memory
|
||||
- inference
|
||||
providers:
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
- provider_id: tgi-inference
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
safety:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::llama-guard
|
||||
config:
|
||||
model: Llama-Guard-3-1B
|
||||
excluded_categories: []
|
||||
- provider_id: meta1
|
||||
provider_type: inline::prompt-guard
|
||||
config:
|
||||
model: Prompt-Guard-86M
|
||||
url: ${env.TGI_URL}
|
||||
memory:
|
||||
- provider_id: meta0
|
||||
provider_type: inline::meta-reference
|
||||
- provider_id: faiss
|
||||
provider_type: inline::faiss
|
||||
config:
|
||||
kvstore:
|
||||
type: sqlite
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/faiss_store.db
|
||||
safety:
|
||||
- provider_id: llama-guard
|
||||
provider_type: inline::llama-guard
|
||||
config: {}
|
||||
agents:
|
||||
- provider_id: meta0
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config:
|
||||
persistence_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ~/.llama/runtime/kvstore.db
|
||||
namespace: null
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/agents_store.db
|
||||
telemetry:
|
||||
- provider_id: meta0
|
||||
- provider_id: meta-reference
|
||||
provider_type: inline::meta-reference
|
||||
config: {}
|
||||
metadata_store:
|
||||
namespace: null
|
||||
type: sqlite
|
||||
db_path: ${env.SQLITE_STORE_DIR:~/.llama/distributions/tgi}/registry.db
|
||||
models:
|
||||
- metadata: {}
|
||||
model_id: ${env.INFERENCE_MODEL}
|
||||
provider_id: tgi-inference
|
||||
provider_model_id: null
|
||||
shields: []
|
||||
memory_banks: []
|
||||
datasets: []
|
||||
scoring_fns: []
|
||||
eval_tasks: []
|
||||
|
|
|
@ -2,35 +2,55 @@
|
|||
|
||||
The `llamastack/distribution-tgi` distribution consists of the following provider configurations.
|
||||
|
||||
|
||||
| **API** | **Inference** | **Agents** | **Memory** | **Safety** | **Telemetry** |
|
||||
|----------------- |--------------- |---------------- |-------------------------------------------------- |---------------- |---------------- |
|
||||
| **Provider(s)** | remote::tgi | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
|
||||
Provider Configuration
|
||||
┏━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
|
||||
┃ API ┃ Provider(s) ┃
|
||||
┡━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
|
||||
│ agents │ `inline::meta-reference` │
|
||||
│ inference │ `remote::tgi` │
|
||||
│ memory │ `inline::faiss`, `remote::chromadb`, `remote::pgvector` │
|
||||
│ safety │ `inline::llama-guard` │
|
||||
│ telemetry │ `inline::meta-reference` │
|
||||
└───────────┴─────────────────────────────────────────────────────────┘
|
||||
|
||||
|
||||
### Docker: Start the Distribution (Single Node GPU)
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.### Environment Variables
|
||||
|
||||
> [!NOTE]
|
||||
> This assumes you have access to GPU to start a TGI server with access to your GPU.
|
||||
The following environment variables can be configured:
|
||||
|
||||
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
||||
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
||||
- `TGI_URL`: URL of the TGI server with the main inference model (default: `http://host.docker.internal:8080}/v1`)
|
||||
- `SAFETY_TGI_URL`: URL of the TGI server with the safety model (default: `http://host.docker.internal:8081/v1`)
|
||||
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
||||
### Models
|
||||
|
||||
The following models are configured by default:
|
||||
- `${env.INFERENCE_MODEL}`
|
||||
- `${env.SAFETY_MODEL}`
|
||||
|
||||
|
||||
```
|
||||
$ cd distributions/tgi && docker compose up
|
||||
## Using Docker Compose
|
||||
|
||||
You can use `docker compose` to start a TGI container and Llama Stack server container together.
|
||||
|
||||
```bash
|
||||
$ cd distributions/tgi; docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```
|
||||
```bash
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
|
||||
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```
|
||||
```bash
|
||||
docker compose down
|
||||
```
|
||||
|
||||
|
@ -42,8 +62,12 @@ If you wish to separately spin up a TGI server, and connect with Llama Stack, yo
|
|||
#### Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.1-8B-Instruct --port 5009
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats on --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
@ -57,12 +81,15 @@ llama stack run ./gpu/run.yaml
|
|||
```
|
||||
|
||||
**Via Docker**
|
||||
```
|
||||
docker run --network host -it -p 5000:5000 -v ./run.yaml:/root/my-run.yaml --gpus=all llamastack/distribution-tgi --yaml_config /root/my-run.yaml
|
||||
```bash
|
||||
docker run --network host -it -p 5001:5001 \
|
||||
-v ./run.yaml:/root/my-run.yaml --gpus=all \
|
||||
llamastack/distribution-tgi \
|
||||
--yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
Make sure in you `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```
|
||||
We have provided a template `run.yaml` file in the `distributions/tgi` directory. Make sure in your `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
|
@ -76,17 +103,24 @@ To serve a new model with `tgi`, change the docker command flag `--model-id <mod
|
|||
|
||||
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
|
||||
|
||||
```
|
||||
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.2-1B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
|
||||
```yaml
|
||||
command: >
|
||||
--dtype bfloat16 --usage-stats on --sharded false
|
||||
--model-id meta-llama/Llama-3.2-1B-Instruct
|
||||
--port 5009 --cuda-memory-fraction 0.7
|
||||
```
|
||||
|
||||
or by changing the docker run command's `--model-id` flag
|
||||
```
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.2-1B-Instruct --port 5009
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats off --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
|
||||
```
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
|
|
|
@ -12,19 +12,20 @@ from pydantic import BaseModel, Field
|
|||
|
||||
@json_schema_type
|
||||
class TGIImplConfig(BaseModel):
|
||||
host: str = "localhost"
|
||||
port: int = 8080
|
||||
protocol: str = "http"
|
||||
|
||||
@property
|
||||
def url(self) -> str:
|
||||
return f"{self.protocol}://{self.host}:{self.port}"
|
||||
|
||||
url: str = Field(
|
||||
description="The URL for the TGI serving endpoint",
|
||||
)
|
||||
api_token: Optional[str] = Field(
|
||||
default=None,
|
||||
description="A bearer token if your TGI endpoint is protected.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def sample_run_config(cls, url: str = "${env.TGI_URL}"):
|
||||
return {
|
||||
"url": url,
|
||||
}
|
||||
|
||||
|
||||
@json_schema_type
|
||||
class InferenceEndpointImplConfig(BaseModel):
|
||||
|
|
|
@ -1,35 +0,0 @@
|
|||
services:
|
||||
${SERVICE_NAME:-tgi}:
|
||||
image: ghcr.io/huggingface/text-generation-inference:2.3.1
|
||||
network_mode: "host"
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/data
|
||||
ports:
|
||||
- ${TGI_PORT:-8000}:${TGI_PORT:-8000}
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES:-0}
|
||||
- HF_HOME=/data
|
||||
- HF_DATASETS_CACHE=/data
|
||||
- HF_MODULES_CACHE=/data
|
||||
- HF_HUB_CACHE=/data
|
||||
command: >
|
||||
--dtype bfloat16
|
||||
--usage-stats off
|
||||
--sharded false
|
||||
--model-id ${TGI_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
--port ${TGI_PORT:-8000}
|
||||
--cuda-memory-fraction ${TGI_CUDA_MEMORY_FRACTION:-0.8}
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
healthcheck:
|
||||
test: ["CMD", "curl", "-f", "http://${SERVICE_NAME:-tgi}:${TGI_PORT:-8000}/health"]
|
||||
interval: 5s
|
||||
timeout: 5s
|
||||
retries: 30
|
|
@ -1,26 +0,0 @@
|
|||
services:
|
||||
${SERVICE_NAME:-vllm}:
|
||||
image: vllm/vllm-openai:latest
|
||||
ports:
|
||||
- ${VLLM_PORT:-5100}:${VLLM_PORT:-5100}
|
||||
volumes:
|
||||
- $HOME/.cache/huggingface:/root/.cache/huggingface
|
||||
devices:
|
||||
- nvidia.com/gpu=all
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
capabilities: [gpu]
|
||||
runtime: nvidia
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES:-0}
|
||||
- HUGGING_FACE_HUB_TOKEN=${HF_TOKEN}
|
||||
command: >
|
||||
--gpu-memory-utilization 0.75
|
||||
--model ${VLLM_MODEL:-meta-llama/Llama-3.2-3B-Instruct}
|
||||
--enforce-eager
|
||||
--max-model-len 8192
|
||||
--max-num-seqs 16
|
||||
--port ${VLLM_PORT:-5100}
|
7
llama_stack/templates/tgi/__init__.py
Normal file
7
llama_stack/templates/tgi/__init__.py
Normal file
|
@ -0,0 +1,7 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from .tgi import get_distribution_template # noqa: F401
|
|
@ -1,12 +1,19 @@
|
|||
version: '2'
|
||||
name: tgi
|
||||
distribution_spec:
|
||||
description: Use TGI for running LLM inference
|
||||
description: Use (an external) TGI server for running LLM inference
|
||||
docker_image: llamastack/distribution-remote-tgi:test-0.0.52rc3
|
||||
providers:
|
||||
inference: remote::tgi
|
||||
inference:
|
||||
- remote::tgi
|
||||
memory:
|
||||
- inline::faiss
|
||||
- remote::chromadb
|
||||
- remote::pgvector
|
||||
safety: inline::llama-guard
|
||||
agents: inline::meta-reference
|
||||
telemetry: inline::meta-reference
|
||||
safety:
|
||||
- inline::llama-guard
|
||||
agents:
|
||||
- inline::meta-reference
|
||||
telemetry:
|
||||
- inline::meta-reference
|
||||
image_type: conda
|
||||
|
|
125
llama_stack/templates/tgi/doc_template.md
Normal file
125
llama_stack/templates/tgi/doc_template.md
Normal file
|
@ -0,0 +1,125 @@
|
|||
# TGI Distribution
|
||||
|
||||
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
|
||||
|
||||
{{ providers_table }}
|
||||
|
||||
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
|
||||
|
||||
{%- if docker_compose_env_vars %}
|
||||
### Environment Variables
|
||||
|
||||
The following environment variables can be configured:
|
||||
|
||||
{% for var, (default_value, description) in docker_compose_env_vars.items() %}
|
||||
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
{%- if default_models %}
|
||||
### Models
|
||||
|
||||
The following models are configured by default:
|
||||
{% for model in default_models %}
|
||||
- `{{ model.model_id }}`
|
||||
{% endfor %}
|
||||
{% endif %}
|
||||
|
||||
|
||||
## Using Docker Compose
|
||||
|
||||
You can use `docker compose` to start a TGI container and Llama Stack server container together.
|
||||
|
||||
```bash
|
||||
$ cd distributions/{{ name }}; docker compose up
|
||||
```
|
||||
|
||||
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
|
||||
```bash
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
|
||||
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
|
||||
INFO: Started server process [1]
|
||||
INFO: Waiting for application startup.
|
||||
INFO: Application startup complete.
|
||||
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
|
||||
```
|
||||
|
||||
To kill the server
|
||||
```bash
|
||||
docker compose down
|
||||
```
|
||||
|
||||
|
||||
### Conda: TGI server + llama stack run
|
||||
|
||||
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
|
||||
|
||||
#### Start TGI server locally
|
||||
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
|
||||
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats on --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
#### Start Llama Stack server pointing to TGI server
|
||||
|
||||
**Via Conda**
|
||||
|
||||
```bash
|
||||
llama stack build --template {{ name }} --image-type conda
|
||||
# -- start a TGI server endpoint
|
||||
llama stack run ./gpu/run.yaml
|
||||
```
|
||||
|
||||
**Via Docker**
|
||||
```bash
|
||||
docker run --network host -it -p 5001:5001 \
|
||||
-v ./run.yaml:/root/my-run.yaml --gpus=all \
|
||||
llamastack/distribution-{{ name }} \
|
||||
--yaml_config /root/my-run.yaml
|
||||
```
|
||||
|
||||
We have provided a template `run.yaml` file in the `distributions/{{ name }}` directory. Make sure in your `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
||||
|
||||
|
||||
### (Optional) Update Model Serving Configuration
|
||||
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
|
||||
|
||||
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
|
||||
|
||||
```yaml
|
||||
command: >
|
||||
--dtype bfloat16 --usage-stats on --sharded false
|
||||
--model-id meta-llama/Llama-3.2-1B-Instruct
|
||||
--port 5009 --cuda-memory-fraction 0.7
|
||||
```
|
||||
|
||||
or by changing the docker run command's `--model-id` flag
|
||||
```bash
|
||||
docker run --rm -it -v $HOME/.cache/huggingface:/data \
|
||||
-p 5009:5009 --gpus all \
|
||||
ghcr.io/huggingface/text-generation-inference:latest \
|
||||
--dtype bfloat16 --usage-stats off --sharded false \
|
||||
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
|
||||
```
|
||||
|
||||
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
|
||||
```yaml
|
||||
inference:
|
||||
- provider_id: tgi0
|
||||
provider_type: remote::tgi
|
||||
config:
|
||||
url: http://127.0.0.1:5009
|
||||
```
|
97
llama_stack/templates/tgi/tgi.py
Normal file
97
llama_stack/templates/tgi/tgi.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
|
||||
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
|
||||
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
|
||||
|
||||
|
||||
def get_distribution_template() -> DistributionTemplate:
|
||||
providers = {
|
||||
"inference": ["remote::tgi"],
|
||||
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
|
||||
"safety": ["inline::llama-guard"],
|
||||
"agents": ["inline::meta-reference"],
|
||||
"telemetry": ["inline::meta-reference"],
|
||||
}
|
||||
|
||||
inference_provider = Provider(
|
||||
provider_id="tgi-inference",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig.sample_run_config(
|
||||
url="${env.TGI_URL}",
|
||||
),
|
||||
)
|
||||
|
||||
inference_model = ModelInput(
|
||||
model_id="${env.INFERENCE_MODEL}",
|
||||
provider_id="tgi-inference",
|
||||
)
|
||||
safety_model = ModelInput(
|
||||
model_id="${env.SAFETY_MODEL}",
|
||||
provider_id="tgi-safety",
|
||||
)
|
||||
|
||||
return DistributionTemplate(
|
||||
name="tgi",
|
||||
distro_type="self_hosted",
|
||||
description="Use (an external) TGI server for running LLM inference",
|
||||
docker_image="llamastack/distribution-remote-tgi:test-0.0.52rc3",
|
||||
template_path=Path(__file__).parent / "doc_template.md",
|
||||
providers=providers,
|
||||
default_models=[inference_model, safety_model],
|
||||
run_configs={
|
||||
"run.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [inference_provider],
|
||||
},
|
||||
default_models=[inference_model],
|
||||
),
|
||||
"run-with-safety.yaml": RunConfigSettings(
|
||||
provider_overrides={
|
||||
"inference": [
|
||||
inference_provider,
|
||||
Provider(
|
||||
provider_id="tgi-safety",
|
||||
provider_type="remote::tgi",
|
||||
config=TGIImplConfig.sample_run_config(
|
||||
url="${env.SAFETY_TGI_URL}",
|
||||
),
|
||||
),
|
||||
],
|
||||
},
|
||||
default_models=[
|
||||
inference_model,
|
||||
safety_model,
|
||||
],
|
||||
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
|
||||
),
|
||||
},
|
||||
docker_compose_env_vars={
|
||||
"LLAMASTACK_PORT": (
|
||||
"5001",
|
||||
"Port for the Llama Stack distribution server",
|
||||
),
|
||||
"INFERENCE_MODEL": (
|
||||
"meta-llama/Llama-3.2-3B-Instruct",
|
||||
"Inference model loaded into the TGI server",
|
||||
),
|
||||
"TGI_URL": (
|
||||
"http://host.docker.internal:8080}/v1",
|
||||
"URL of the TGI server with the main inference model",
|
||||
),
|
||||
"SAFETY_TGI_URL": (
|
||||
"http://host.docker.internal:8081/v1",
|
||||
"URL of the TGI server with the safety model",
|
||||
),
|
||||
"SAFETY_MODEL": (
|
||||
"meta-llama/Llama-Guard-3-1B",
|
||||
"Name of the safety (Llama-Guard) model to use",
|
||||
),
|
||||
},
|
||||
)
|
Loading…
Add table
Add a link
Reference in a new issue