4 KiB
TGI Distribution
The llamastack/distribution-{{ name }} distribution consists of the following provider configurations.
{{ providers_table }}
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
{%- if docker_compose_env_vars %}
Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in docker_compose_env_vars.items() %}
{{ var }}: {{ description }} (default:{{ default_value }}) {% endfor %} {% endif %}
{%- if default_models %}
Models
The following models are configured by default: {% for model in default_models %}
{{ model.model_id }}{% endfor %} {% endif %}
Using Docker Compose
You can use docker compose to start a TGI container and Llama Stack server container together.
$ cd distributions/{{ name }}; docker compose up
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
To kill the server
docker compose down
Conda: TGI server + llama stack run
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
Start TGI server locally
- Please check the TGI Getting Started Guide to get a TGI endpoint.
docker run --rm -it -v $HOME/.cache/huggingface:/data \
-p 5009:5009 --gpus all \
ghcr.io/huggingface/text-generation-inference:latest \
--dtype bfloat16 --usage-stats on --sharded false \
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
Start Llama Stack server pointing to TGI server
Via Conda
llama stack build --template {{ name }} --image-type conda
# -- start a TGI server endpoint
llama stack run ./gpu/run.yaml
Via Docker
docker run --network host -it -p 5001:5001 \
-v ./run.yaml:/root/my-run.yaml --gpus=all \
llamastack/distribution-{{ name }} \
--yaml_config /root/my-run.yaml
We have provided a template run.yaml file in the distributions/{{ name }} directory. Make sure in your run.yaml file, you inference provider is pointing to the correct TGI server endpoint. E.g.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
(Optional) Update Model Serving Configuration
To serve a new model with tgi, change the docker command flag --model-id <model-to-serve>.
This can be done by edit the command args in compose.yaml. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
command: >
--dtype bfloat16 --usage-stats on --sharded false
--model-id meta-llama/Llama-3.2-1B-Instruct
--port 5009 --cuda-memory-fraction 0.7
or by changing the docker run command's --model-id flag
docker run --rm -it -v $HOME/.cache/huggingface:/data \
-p 5009:5009 --gpus all \
ghcr.io/huggingface/text-generation-inference:latest \
--dtype bfloat16 --usage-stats off --sharded false \
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
In run.yaml, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009