Convert TGI

This commit is contained in:
Ashwin Bharambe 2024-11-17 14:49:41 -08:00
parent 9bb07ce298
commit 028530546f
14 changed files with 485 additions and 160 deletions

View file

@ -0,0 +1,7 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .tgi import get_distribution_template # noqa: F401

View file

@ -1,12 +1,19 @@
version: '2'
name: tgi
distribution_spec:
description: Use TGI for running LLM inference
description: Use (an external) TGI server for running LLM inference
docker_image: llamastack/distribution-remote-tgi:test-0.0.52rc3
providers:
inference: remote::tgi
inference:
- remote::tgi
memory:
- inline::faiss
- remote::chromadb
- remote::pgvector
safety: inline::llama-guard
agents: inline::meta-reference
telemetry: inline::meta-reference
safety:
- inline::llama-guard
agents:
- inline::meta-reference
telemetry:
- inline::meta-reference
image_type: conda

View file

@ -0,0 +1,125 @@
# TGI Distribution
The `llamastack/distribution-{{ name }}` distribution consists of the following provider configurations.
{{ providers_table }}
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
{%- if docker_compose_env_vars %}
### Environment Variables
The following environment variables can be configured:
{% for var, (default_value, description) in docker_compose_env_vars.items() %}
- `{{ var }}`: {{ description }} (default: `{{ default_value }}`)
{% endfor %}
{% endif %}
{%- if default_models %}
### Models
The following models are configured by default:
{% for model in default_models %}
- `{{ model.model_id }}`
{% endfor %}
{% endif %}
## Using Docker Compose
You can use `docker compose` to start a TGI container and Llama Stack server container together.
```bash
$ cd distributions/{{ name }}; docker compose up
```
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should be able to see the following outputs --
```bash
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5001 (Press CTRL+C to quit)
```
To kill the server
```bash
docker compose down
```
### Conda: TGI server + llama stack run
If you wish to separately spin up a TGI server, and connect with Llama Stack, you may use the following commands.
#### Start TGI server locally
- Please check the [TGI Getting Started Guide](https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#get-started) to get a TGI endpoint.
```bash
docker run --rm -it -v $HOME/.cache/huggingface:/data \
-p 5009:5009 --gpus all \
ghcr.io/huggingface/text-generation-inference:latest \
--dtype bfloat16 --usage-stats on --sharded false \
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
```
#### Start Llama Stack server pointing to TGI server
**Via Conda**
```bash
llama stack build --template {{ name }} --image-type conda
# -- start a TGI server endpoint
llama stack run ./gpu/run.yaml
```
**Via Docker**
```bash
docker run --network host -it -p 5001:5001 \
-v ./run.yaml:/root/my-run.yaml --gpus=all \
llamastack/distribution-{{ name }} \
--yaml_config /root/my-run.yaml
```
We have provided a template `run.yaml` file in the `distributions/{{ name }}` directory. Make sure in your `run.yaml` file, you inference provider is pointing to the correct TGI server endpoint. E.g.
```yaml
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
```
### (Optional) Update Model Serving Configuration
To serve a new model with `tgi`, change the docker command flag `--model-id <model-to-serve>`.
This can be done by edit the `command` args in `compose.yaml`. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
```yaml
command: >
--dtype bfloat16 --usage-stats on --sharded false
--model-id meta-llama/Llama-3.2-1B-Instruct
--port 5009 --cuda-memory-fraction 0.7
```
or by changing the docker run command's `--model-id` flag
```bash
docker run --rm -it -v $HOME/.cache/huggingface:/data \
-p 5009:5009 --gpus all \
ghcr.io/huggingface/text-generation-inference:latest \
--dtype bfloat16 --usage-stats off --sharded false \
--model-id meta-llama/Llama-3.2-3B-Instruct --port 5009
```
In `run.yaml`, make sure you point the correct server endpoint to the TGI server endpoint serving your model.
```yaml
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
```

View file

@ -0,0 +1,97 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from pathlib import Path
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput
from llama_stack.providers.remote.inference.tgi import TGIImplConfig
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings
def get_distribution_template() -> DistributionTemplate:
providers = {
"inference": ["remote::tgi"],
"memory": ["inline::faiss", "remote::chromadb", "remote::pgvector"],
"safety": ["inline::llama-guard"],
"agents": ["inline::meta-reference"],
"telemetry": ["inline::meta-reference"],
}
inference_provider = Provider(
provider_id="tgi-inference",
provider_type="remote::tgi",
config=TGIImplConfig.sample_run_config(
url="${env.TGI_URL}",
),
)
inference_model = ModelInput(
model_id="${env.INFERENCE_MODEL}",
provider_id="tgi-inference",
)
safety_model = ModelInput(
model_id="${env.SAFETY_MODEL}",
provider_id="tgi-safety",
)
return DistributionTemplate(
name="tgi",
distro_type="self_hosted",
description="Use (an external) TGI server for running LLM inference",
docker_image="llamastack/distribution-remote-tgi:test-0.0.52rc3",
template_path=Path(__file__).parent / "doc_template.md",
providers=providers,
default_models=[inference_model, safety_model],
run_configs={
"run.yaml": RunConfigSettings(
provider_overrides={
"inference": [inference_provider],
},
default_models=[inference_model],
),
"run-with-safety.yaml": RunConfigSettings(
provider_overrides={
"inference": [
inference_provider,
Provider(
provider_id="tgi-safety",
provider_type="remote::tgi",
config=TGIImplConfig.sample_run_config(
url="${env.SAFETY_TGI_URL}",
),
),
],
},
default_models=[
inference_model,
safety_model,
],
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}")],
),
},
docker_compose_env_vars={
"LLAMASTACK_PORT": (
"5001",
"Port for the Llama Stack distribution server",
),
"INFERENCE_MODEL": (
"meta-llama/Llama-3.2-3B-Instruct",
"Inference model loaded into the TGI server",
),
"TGI_URL": (
"http://host.docker.internal:8080}/v1",
"URL of the TGI server with the main inference model",
),
"SAFETY_TGI_URL": (
"http://host.docker.internal:8081/v1",
"URL of the TGI server with the safety model",
),
"SAFETY_MODEL": (
"meta-llama/Llama-Guard-3-1B",
"Name of the safety (Llama-Guard) model to use",
),
},
)