mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-29 07:14:20 +00:00
Use InferenceClient.text_generation for TGI inference
This commit is contained in:
parent
7aa50934bf
commit
031dbc0e45
1 changed files with 50 additions and 77 deletions
|
@ -9,9 +9,8 @@ from typing import AsyncGenerator
|
|||
|
||||
from huggingface_hub import InferenceClient
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.datatypes import Message, StopReason
|
||||
from llama_models.llama3.api.datatypes import StopReason
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import resolve_model
|
||||
|
||||
from llama_toolchain.inference.api import *
|
||||
from llama_toolchain.inference.api.api import ( # noqa: F403
|
||||
|
@ -19,6 +18,7 @@ from llama_toolchain.inference.api.api import ( # noqa: F403
|
|||
ChatCompletionResponse,
|
||||
ChatCompletionResponseStreamChunk,
|
||||
)
|
||||
from llama_toolchain.inference.prepare_messages import prepare_messages
|
||||
|
||||
from .config import TGIImplConfig
|
||||
|
||||
|
@ -49,26 +49,6 @@ class TGIAdapter(Inference):
|
|||
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
||||
raise NotImplementedError()
|
||||
|
||||
def _convert_messages(self, messages: list[Message]) -> List[Message]: # type: ignore
|
||||
tgi_messages = []
|
||||
for message in messages:
|
||||
if message.role == "ipython":
|
||||
role = "tool"
|
||||
else:
|
||||
role = message.role
|
||||
tgi_messages.append({"role": role, "content": message.content})
|
||||
|
||||
return tgi_messages
|
||||
|
||||
def resolve_hf_model(self, model_name: str) -> str:
|
||||
model = resolve_model(model_name)
|
||||
assert (
|
||||
model is not None
|
||||
and model.descriptor(shorten_default_variant=True) in HF_SUPPORTED_MODELS
|
||||
), f"Unsupported model: {model_name}, use one of the supported models: {','.join(HF_SUPPORTED_MODELS.keys())}"
|
||||
|
||||
return HF_SUPPORTED_MODELS.get(model.descriptor(shorten_default_variant=True))
|
||||
|
||||
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
|
||||
options = {}
|
||||
if request.sampling_params is not None:
|
||||
|
@ -79,27 +59,36 @@ class TGIAdapter(Inference):
|
|||
return options
|
||||
|
||||
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
||||
messages = prepare_messages(request)
|
||||
model_input = self.formatter.encode_dialog_prompt(messages)
|
||||
prompt = self.tokenizer.decode(model_input.tokens)
|
||||
|
||||
model_info = self.client.get_endpoint_info(model=self.config.url)
|
||||
max_new_tokens = min(
|
||||
request.sampling_params.max_tokens or model_info["max_total_tokens"],
|
||||
model_info["max_total_tokens"] - len(model_input.tokens) - 1,
|
||||
)
|
||||
|
||||
options = self.get_chat_options(request)
|
||||
messages = self._convert_messages(request.messages)
|
||||
|
||||
if not request.stream:
|
||||
response = self.client.chat_completion(
|
||||
messages=messages,
|
||||
response = self.client.text_generation(
|
||||
prompt=prompt,
|
||||
stream=False,
|
||||
details=True,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**options,
|
||||
)
|
||||
stop_reason = None
|
||||
if response.choices[0].finish_reason:
|
||||
if (
|
||||
response.choices[0].finish_reason == "stop_sequence"
|
||||
or response.choices[0].finish_reason == "eos_token"
|
||||
):
|
||||
if response.details.finish_reason:
|
||||
if response.details.finish_reason == "stop":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif response.choices[0].finish_reason == "length":
|
||||
elif response.details.finish_reason == "length":
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
completion_message = self.formatter.decode_assistant_message_from_content(
|
||||
response.choices[0].message.content,
|
||||
response.generated_text,
|
||||
stop_reason,
|
||||
)
|
||||
yield ChatCompletionResponse(
|
||||
|
@ -117,32 +106,22 @@ class TGIAdapter(Inference):
|
|||
buffer = ""
|
||||
ipython = False
|
||||
stop_reason = None
|
||||
tokens = []
|
||||
|
||||
for chunk in self.client.chat_completion(
|
||||
messages=messages, stream=True, **options
|
||||
for response in self.client.text_generation(
|
||||
prompt=prompt,
|
||||
stream=True,
|
||||
details=True,
|
||||
max_new_tokens=max_new_tokens,
|
||||
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
||||
**options,
|
||||
):
|
||||
if chunk.choices[0].finish_reason:
|
||||
if (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "stop_sequence"
|
||||
) or (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "eos_token"
|
||||
):
|
||||
stop_reason = StopReason.end_of_turn
|
||||
elif (
|
||||
stop_reason is None
|
||||
and chunk.choices[0].finish_reason == "length"
|
||||
):
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
break
|
||||
token_result = response.token
|
||||
|
||||
text = chunk.choices[0].delta.content
|
||||
if text is None:
|
||||
continue
|
||||
buffer += token_result.text
|
||||
tokens.append(token_result.id)
|
||||
|
||||
# check if its a tool call ( aka starts with <|python_tag|> )
|
||||
if not ipython and text.startswith("<|python_tag|>"):
|
||||
if not ipython and buffer.startswith("<|python_tag|>"):
|
||||
ipython = True
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
|
@ -153,25 +132,27 @@ class TGIAdapter(Inference):
|
|||
),
|
||||
)
|
||||
)
|
||||
buffer += text
|
||||
buffer = buffer[len("<|python_tag|>") :]
|
||||
continue
|
||||
|
||||
if ipython:
|
||||
if text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
continue
|
||||
elif text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
continue
|
||||
if token_result.text == "<|eot_id|>":
|
||||
stop_reason = StopReason.end_of_turn
|
||||
text = ""
|
||||
elif token_result.text == "<|eom_id|>":
|
||||
stop_reason = StopReason.end_of_message
|
||||
text = ""
|
||||
else:
|
||||
text = token_result.text
|
||||
|
||||
buffer += text
|
||||
if ipython:
|
||||
delta = ToolCallDelta(
|
||||
content=text,
|
||||
parse_status=ToolCallParseStatus.in_progress,
|
||||
)
|
||||
else:
|
||||
delta = text
|
||||
|
||||
if stop_reason is None:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
|
@ -179,20 +160,12 @@ class TGIAdapter(Inference):
|
|||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
else:
|
||||
buffer += text
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
event=ChatCompletionResponseEvent(
|
||||
event_type=ChatCompletionResponseEventType.progress,
|
||||
delta=text,
|
||||
stop_reason=stop_reason,
|
||||
)
|
||||
)
|
||||
|
||||
if stop_reason is None:
|
||||
stop_reason = StopReason.out_of_tokens
|
||||
|
||||
# parse tool calls and report errors
|
||||
message = self.formatter.decode_assistant_message_from_content(
|
||||
buffer, stop_reason
|
||||
)
|
||||
message = self.formatter.decode_assistant_message(tokens, stop_reason)
|
||||
parsed_tool_calls = len(message.tool_calls) > 0
|
||||
if ipython and not parsed_tool_calls:
|
||||
yield ChatCompletionResponseStreamChunk(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue