mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
200 lines
7.4 KiB
Python
200 lines
7.4 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
from huggingface_hub import InferenceClient
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import StopReason
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_toolchain.inference.api import *
|
|
from llama_toolchain.inference.api.api import ( # noqa: F403
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
)
|
|
from llama_toolchain.inference.prepare_messages import prepare_messages
|
|
|
|
from .config import TGIImplConfig
|
|
|
|
HF_SUPPORTED_MODELS = {
|
|
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
|
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
|
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
|
|
}
|
|
|
|
|
|
class TGIAdapter(Inference):
|
|
|
|
def __init__(self, config: TGIImplConfig) -> None:
|
|
self.config = config
|
|
self.tokenizer = Tokenizer.get_instance()
|
|
self.formatter = ChatFormat(self.tokenizer)
|
|
|
|
@property
|
|
def client(self) -> InferenceClient:
|
|
return InferenceClient(base_url=self.config.url, token=self.config.api_token)
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
raise NotImplementedError()
|
|
|
|
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
|
|
options = {}
|
|
if request.sampling_params is not None:
|
|
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
|
|
if getattr(request.sampling_params, attr):
|
|
options[attr] = getattr(request.sampling_params, attr)
|
|
|
|
return options
|
|
|
|
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
messages = prepare_messages(request)
|
|
model_input = self.formatter.encode_dialog_prompt(messages)
|
|
prompt = self.tokenizer.decode(model_input.tokens)
|
|
|
|
model_info = self.client.get_endpoint_info(model=self.config.url)
|
|
max_new_tokens = min(
|
|
request.sampling_params.max_tokens or model_info["max_total_tokens"],
|
|
model_info["max_total_tokens"] - len(model_input.tokens) - 1,
|
|
)
|
|
|
|
options = self.get_chat_options(request)
|
|
|
|
if not request.stream:
|
|
response = self.client.text_generation(
|
|
prompt=prompt,
|
|
stream=False,
|
|
details=True,
|
|
max_new_tokens=max_new_tokens,
|
|
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
|
**options,
|
|
)
|
|
stop_reason = None
|
|
if response.details.finish_reason:
|
|
if response.details.finish_reason == "stop":
|
|
stop_reason = StopReason.end_of_turn
|
|
elif response.details.finish_reason == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
completion_message = self.formatter.decode_assistant_message_from_content(
|
|
response.generated_text,
|
|
stop_reason,
|
|
)
|
|
yield ChatCompletionResponse(
|
|
completion_message=completion_message,
|
|
logprobs=None,
|
|
)
|
|
|
|
else:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta="",
|
|
)
|
|
)
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
tokens = []
|
|
|
|
for response in self.client.text_generation(
|
|
prompt=prompt,
|
|
stream=True,
|
|
details=True,
|
|
max_new_tokens=max_new_tokens,
|
|
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
|
|
**options,
|
|
):
|
|
token_result = response.token
|
|
|
|
buffer += token_result.text
|
|
tokens.append(token_result.id)
|
|
|
|
if not ipython and buffer.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer = buffer[len("<|python_tag|>") :]
|
|
continue
|
|
|
|
if token_result.text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
elif token_result.text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
else:
|
|
text = token_result.text
|
|
|
|
if ipython:
|
|
delta = ToolCallDelta(
|
|
content=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
else:
|
|
delta = text
|
|
|
|
if stop_reason is None:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
if stop_reason is None:
|
|
stop_reason = StopReason.out_of_tokens
|
|
|
|
# parse tool calls and report errors
|
|
message = self.formatter.decode_assistant_message(tokens, stop_reason)
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content="",
|
|
parse_status=ToolCallParseStatus.failure,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
content=tool_call,
|
|
parse_status=ToolCallParseStatus.success,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|