Use the lower-level generate_stream() method for correct tool calling

This commit is contained in:
Ashwin Bharambe 2024-09-04 17:36:45 -07:00
parent f355b9b844
commit 046afcb945
2 changed files with 80 additions and 70 deletions

View file

@ -8,14 +8,15 @@ from typing import AsyncGenerator, List
import httpx
from huggingface_hub import InferenceClient
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from text_generation import Client
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.prepare_messages import prepare_messages
SUPPORTED_MODELS = {
@ -28,19 +29,26 @@ SUPPORTED_MODELS = {
class TGIInferenceAdapter(Inference):
def __init__(self, url: str) -> None:
self.url = url.rstrip("/")
tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(tokenizer)
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
self.model = None
self.max_tokens = None
async def initialize(self) -> None:
hf_models = {v: k for k, v in SUPPORTED_MODELS.items()}
try:
print(f"Connecting to TGI server at: {self.url}")
async with httpx.AsyncClient() as client:
response = await client.get(f"{self.url}/info")
response.raise_for_status()
info = response.json()
if "model_id" not in info:
raise RuntimeError("Missing model_id in model info")
if "max_total_tokens" not in info:
raise RuntimeError("Missing max_total_tokens in model info")
self.max_tokens = info["max_total_tokens"]
model_id = info["model_id"]
if model_id not in hf_models:
raise RuntimeError(
@ -48,6 +56,11 @@ class TGIInferenceAdapter(Inference):
)
self.model = hf_models[model_id]
except Exception as e:
import traceback
traceback.print_exc()
raise RuntimeError("Could not connect to TGI server") from e
async def shutdown(self) -> None:
pass
@ -75,6 +88,15 @@ class TGIInferenceAdapter(Inference):
return options
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
messages = prepare_messages(request)
model_input = self.formatter.encode_dialog_prompt(messages)
prompt = self.tokenizer.decode(model_input.tokens)
max_new_tokens = min(
request.sampling_params.max_tokens or self.max_tokens,
self.max_tokens - len(model_input.tokens) - 1,
)
if request.model != self.model:
raise ValueError(
f"Model mismatch, expected: {self.model}, got: {request.model}"
@ -82,23 +104,27 @@ class TGIInferenceAdapter(Inference):
options = self.get_chat_options(request)
client = InferenceClient(base_url=self.url)
client = Client(base_url=self.url)
if not request.stream:
r = client.chat.completions.create(
model=SUPPORTED_MODELS[self.model],
messages=self._convert_messages(request.messages),
stream=False,
r = client.generate(
prompt,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
)
stop_reason = None
if r.choices[0].finish_reason:
if r.choices[0].finish_reason == "stop":
if r.details.finish_reason:
if r.details.finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.choices[0].finish_reason == "length":
elif r.details.finish_reason == "length":
stop_reason = StopReason.out_of_tokens
else:
stop_reason = StopReason.end_of_message
else:
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.choices[0].message.content, stop_reason
r.generated_text, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
@ -115,30 +141,20 @@ class TGIInferenceAdapter(Inference):
buffer = ""
ipython = False
stop_reason = None
tokens = []
response = client.chat.completions.create(
model=SUPPORTED_MODELS[self.model],
messages=self._convert_messages(request.messages),
stream=True,
for response in client.generate_stream(
prompt,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
)
for chunk in response:
if chunk.choices[0].finish_reason:
if stop_reason is None and chunk.choices[0].finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif (
stop_reason is None
and chunk.choices[0].finish_reason == "length"
):
stop_reason = StopReason.out_of_tokens
break
token_result = response.token
text = chunk.choices[0].delta.content
if text is None:
continue
buffer += token_result.text
tokens.append(token_result.id)
# check if its a tool call ( aka starts with <|python_tag|> )
if not ipython and text.startswith("<|python_tag|>"):
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
@ -149,25 +165,27 @@ class TGIInferenceAdapter(Inference):
),
)
)
buffer += text
buffer = buffer[len("<|python_tag|>") :]
continue
if ipython:
if text == "<|eot_id|>":
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
continue
elif text == "<|eom_id|>":
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
continue
else:
text = token_result.text
buffer += text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
@ -175,20 +193,12 @@ class TGIInferenceAdapter(Inference):
stop_reason=stop_reason,
)
)
else:
buffer += text
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=text,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# parse tool calls and report errors
message = self.formatter.decode_assistant_message_from_content(
buffer, stop_reason
)
message = self.formatter.decode_assistant_message(tokens, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(

View file

@ -39,7 +39,7 @@ def available_inference_providers() -> List[ProviderSpec]:
api=Api.inference,
adapter=AdapterSpec(
adapter_id="tgi",
pip_packages=["huggingface-hub"],
pip_packages=["text-generation"],
module="llama_toolchain.inference.adapters.tgi",
),
),