aggregation function config

This commit is contained in:
Xi Yan 2024-12-10 16:16:38 -08:00
parent fbc3888fd7
commit 1077c521b1
8 changed files with 79 additions and 28 deletions

View file

@ -113,7 +113,9 @@ class BasicScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -47,13 +47,18 @@ class EqualityScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -69,13 +69,18 @@ class RegexParserScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -41,13 +41,18 @@ class SubsetOfScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -120,7 +120,9 @@ class LlmAsJudgeScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -3,13 +3,18 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from typing import Any, Dict, List, Optional
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
import re
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
@ -89,8 +94,18 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
print(f"scoring_params: {scoring_params}")
# TODO: this needs to be config based aggregation, and only useful w/ Jobs API
return {}
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = []
if (
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -23,6 +23,11 @@ from llama_stack.providers.tests.datasetio.test_datasetio import register_datase
# -v -s --tb=short --disable-warnings
@pytest.fixture
def sample_judge_prompt_template():
return "Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9."
class TestScoring:
@pytest.mark.asyncio
async def test_scoring_functions_list(self, scoring_stack):
@ -97,7 +102,9 @@ class TestScoring:
assert len(response.results[x].score_rows) == 5
@pytest.mark.asyncio
async def test_scoring_score_with_params(self, scoring_stack):
async def test_scoring_score_with_params_llm_as_judge(
self, scoring_stack, sample_judge_prompt_template
):
(
scoring_impl,
scoring_functions_impl,
@ -136,8 +143,9 @@ class TestScoring:
scoring_functions = {
"llm-as-judge::base": LLMAsJudgeScoringFnParams(
judge_model="Llama3.1-405B-Instruct",
prompt_template="Output a number response in the following format: Score: <number>, where <number> is the number between 0 and 9.",
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=[AggregationFunctionType.categorical_count],
)
}
@ -161,7 +169,9 @@ class TestScoring:
assert len(response.results[x].score_rows) == 5
@pytest.mark.asyncio
async def test_scoring_score_with_aggregation_functions(self, scoring_stack):
async def test_scoring_score_with_aggregation_functions(
self, scoring_stack, sample_judge_prompt_template
):
(
scoring_impl,
scoring_functions_impl,
@ -183,7 +193,6 @@ class TestScoring:
assert len(rows.rows) == 3
scoring_fns_list = await scoring_functions_impl.list_scoring_functions()
provider_id = scoring_fns_list[0].provider_id
scoring_functions = {}
aggr_fns = [
AggregationFunctionType.accuracy,
@ -193,8 +202,12 @@ class TestScoring:
]
for x in scoring_fns_list:
if x.provider_id == "llm-as-judge":
aggr_fns = [AggregationFunctionType.categorical_count]
scoring_functions[x.identifier] = LLMAsJudgeScoringFnParams(
aggregation_functions=[AggregationFunctionType.categorical_count],
judge_model="Llama3.1-405B-Instruct",
prompt_template=sample_judge_prompt_template,
judge_score_regexes=[r"Score: (\d+)"],
aggregation_functions=aggr_fns,
)
elif x.provider_id == "basic":
if "regex_parser" in x.identifier:
@ -212,6 +225,9 @@ class TestScoring:
input_rows=rows.rows,
scoring_functions=scoring_functions,
)
from rich.pretty import pprint
pprint(response)
assert len(response.results) == len(scoring_functions)
for x in scoring_functions:
assert x in response.results
assert len(response.results[x].score_rows) == len(rows.rows)
assert len(response.results[x].aggregated_results) == len(aggr_fns)

View file

@ -48,6 +48,7 @@ class BaseScoringFn(ABC):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
raise NotImplementedError()