aggregation function config

This commit is contained in:
Xi Yan 2024-12-10 16:16:38 -08:00
parent fbc3888fd7
commit 1077c521b1
8 changed files with 79 additions and 28 deletions

View file

@ -113,7 +113,9 @@ class BasicScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -47,13 +47,18 @@ class EqualityScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -69,13 +69,18 @@ class RegexParserScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -41,13 +41,18 @@ class SubsetOfScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = [AggregationFunctionType.accuracy]
if (
scoring_params
and hasattr(scoring_params, "aggregation_functions")
and scoring_params.aggregation_functions
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(scoring_params.aggregation_functions)
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)

View file

@ -120,7 +120,9 @@ class LlmAsJudgeScoringImpl(Scoring, ScoringFunctionsProtocolPrivate):
score_results = await scoring_fn.score(
input_rows, scoring_fn_id, scoring_fn_params
)
agg_results = await scoring_fn.aggregate(score_results, scoring_fn_params)
agg_results = await scoring_fn.aggregate(
score_results, scoring_fn_id, scoring_fn_params
)
res[scoring_fn_id] = ScoringResult(
score_rows=score_results,
aggregated_results=agg_results,

View file

@ -3,13 +3,18 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from typing import Any, Dict, List, Optional
from llama_stack.apis.inference.inference import Inference
from llama_stack.apis.scoring import ScoringResultRow
from llama_stack.apis.scoring_functions import ScoringFnParams
from llama_stack.providers.utils.scoring.aggregation_utils import aggregate_metrics
from llama_stack.providers.utils.scoring.base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
import re
from .fn_defs.llm_as_judge_405b_simpleqa import llm_as_judge_405b_simpleqa
@ -89,8 +94,18 @@ class LlmAsJudgeScoringFn(BaseScoringFn):
async def aggregate(
self,
scoring_results: List[ScoringResultRow],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> Dict[str, Any]:
print(f"scoring_params: {scoring_params}")
# TODO: this needs to be config based aggregation, and only useful w/ Jobs API
return {}
params = self.supported_fn_defs_registry[scoring_fn_identifier].params
if scoring_params is not None:
params = scoring_params
aggregation_functions = []
if (
params
and hasattr(params, "aggregation_functions")
and params.aggregation_functions
):
aggregation_functions.extend(params.aggregation_functions)
return aggregate_metrics(scoring_results, aggregation_functions)